Author: E.E. Nikitin
Publisher: Springer Science & Business Media
ISBN: 364282045X
Category : Science
Languages : en
Pages : 445
Book Description
The theory of atom-molecule collisions is one of the basic fields in chemi cal physics. Its most challenging part - the dynamics of chemical reactions - is as yet unresolved, but is developing very quickly. It is here a great help to have an analysis of those parts of collision theory which are already complete, a good example being the theory of atomic collisions in process es specific to chemical physics. It has long been observed that many notions of this theory can also be applied successfully to reactive and unreactive molecular collisions. More over, atomic collisions often represent a touchstone in testing approaches proposed for the solution of more complicated problems. Research on the theory of slow atomic collisions carried out at the Moscow Institute of Chemical Physics has been based on just these ideas. A general viewpoint concerning the setting up and representation of the theory came out of these studies, and appeared to be useful in studying complicated systems as well. It underlies the representation of the theory of slow atomic colli sions in this book.
Theory of Slow Atomic Collisions
Author: E.E. Nikitin
Publisher: Springer Science & Business Media
ISBN: 364282045X
Category : Science
Languages : en
Pages : 445
Book Description
The theory of atom-molecule collisions is one of the basic fields in chemi cal physics. Its most challenging part - the dynamics of chemical reactions - is as yet unresolved, but is developing very quickly. It is here a great help to have an analysis of those parts of collision theory which are already complete, a good example being the theory of atomic collisions in process es specific to chemical physics. It has long been observed that many notions of this theory can also be applied successfully to reactive and unreactive molecular collisions. More over, atomic collisions often represent a touchstone in testing approaches proposed for the solution of more complicated problems. Research on the theory of slow atomic collisions carried out at the Moscow Institute of Chemical Physics has been based on just these ideas. A general viewpoint concerning the setting up and representation of the theory came out of these studies, and appeared to be useful in studying complicated systems as well. It underlies the representation of the theory of slow atomic colli sions in this book.
Publisher: Springer Science & Business Media
ISBN: 364282045X
Category : Science
Languages : en
Pages : 445
Book Description
The theory of atom-molecule collisions is one of the basic fields in chemi cal physics. Its most challenging part - the dynamics of chemical reactions - is as yet unresolved, but is developing very quickly. It is here a great help to have an analysis of those parts of collision theory which are already complete, a good example being the theory of atomic collisions in process es specific to chemical physics. It has long been observed that many notions of this theory can also be applied successfully to reactive and unreactive molecular collisions. More over, atomic collisions often represent a touchstone in testing approaches proposed for the solution of more complicated problems. Research on the theory of slow atomic collisions carried out at the Moscow Institute of Chemical Physics has been based on just these ideas. A general viewpoint concerning the setting up and representation of the theory came out of these studies, and appeared to be useful in studying complicated systems as well. It underlies the representation of the theory of slow atomic colli sions in this book.
Collisions of Electrons with Atoms and Molecules
Author: G.F. Drukarev
Publisher: Springer Science & Business Media
ISBN: 1461317797
Category : Science
Languages : en
Pages : 252
Book Description
This book is a short outline of the present state of the theory of electron collisions with atomic particles - atoms, molecules and ions. It is addressed to those who by nature of their work need detailed information about the cross sections of various processes of electron collisions with atomic particles: experimentalists working in plasma physics, optics, quantum electronics, atmospheric and space physics, 'etc. Some of the cross sections have been measured. But in many important cases the only source of information is theoretical calcu lation. The numerous theoretical papers dealing with electronic collision processes contain various approximations. The inter relation between them and the level of their accuracy is often diffi cult to understand without a systematic study of the theory of atomic collisions, not to mention that theoretical considerations are necessary for the consistent interpretation of experimental results. The main constituents of the book are: 1. General theory with special emphasis on the topics most impor tant for understanding and discussing electron collisions with atomic particles.
Publisher: Springer Science & Business Media
ISBN: 1461317797
Category : Science
Languages : en
Pages : 252
Book Description
This book is a short outline of the present state of the theory of electron collisions with atomic particles - atoms, molecules and ions. It is addressed to those who by nature of their work need detailed information about the cross sections of various processes of electron collisions with atomic particles: experimentalists working in plasma physics, optics, quantum electronics, atmospheric and space physics, 'etc. Some of the cross sections have been measured. But in many important cases the only source of information is theoretical calcu lation. The numerous theoretical papers dealing with electronic collision processes contain various approximations. The inter relation between them and the level of their accuracy is often diffi cult to understand without a systematic study of the theory of atomic collisions, not to mention that theoretical considerations are necessary for the consistent interpretation of experimental results. The main constituents of the book are: 1. General theory with special emphasis on the topics most impor tant for understanding and discussing electron collisions with atomic particles.
Electron Emission in Heavy Ion-Atom Collisions
Author: Nikolaus Stolterfoht
Publisher: Springer Science & Business Media
ISBN: 9783540631842
Category : Science
Languages : en
Pages : 270
Book Description
This volume reviews the theoretical and experimental work about continuous electron emission in energetic ion-atom collisions over the last 30 years. General properties of the two-center electron emission are analyzed, and particular attention is given to screening effects. The book also offers an overview of multiple ionization processes.
Publisher: Springer Science & Business Media
ISBN: 9783540631842
Category : Science
Languages : en
Pages : 270
Book Description
This volume reviews the theoretical and experimental work about continuous electron emission in energetic ion-atom collisions over the last 30 years. General properties of the two-center electron emission are analyzed, and particular attention is given to screening effects. The book also offers an overview of multiple ionization processes.
R-Matrix Theory of Atomic Collisions
Author: Philip George Burke
Publisher: Springer Science & Business Media
ISBN: 3642159311
Category : Science
Languages : en
Pages : 750
Book Description
Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include the electron and photon collisions with atoms, ions and molecules which are required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.
Publisher: Springer Science & Business Media
ISBN: 3642159311
Category : Science
Languages : en
Pages : 750
Book Description
Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include the electron and photon collisions with atoms, ions and molecules which are required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.
Case studies in atomic collision physics
Author: [Anonymus AC02857898]
Publisher:
ISBN:
Category : Scattering (Physics)
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Scattering (Physics)
Languages : en
Pages :
Book Description
Computational Methods for Electron—Molecule Collisions
Author: Franco A. Gianturco
Publisher: Springer Science & Business Media
ISBN: 1475797974
Category : Science
Languages : en
Pages : 374
Book Description
The collision of electrons with molecules and molecular ions is a fundamental pro cess in atomic and molecular physics and in chemistry. At high incident electron en ergies, electron-molecule collisions are used to deduce molecular geometries, oscillator strengths for optically allowed transitions, and in the case of electron-impact ionization, to probe the momentum distribution of the molecule itself. When the incident electron energy is comparable to or below those of the molecular valence electrons, the physics involved is particularly rich. Correlation and exchange effects necessary to describe such collision processes bear a close resemblance to similar efft:cts in the theory of electronic structure in molecules. Compound state formations, in the form of resonances and vir tual states, manifest themselves in experimental observables which provide details of the electron-molecule interactions. Ro-vibrational excitations by low-energy electron collisions exemplify energy transfer between the electronic and nuclear motion. The role of nonadiabatic interaction is raised here. When the final vibrational state is in the continuum, molecular dissociation occurs. Dissociative recombination and dissociative attachment are examples of such fragmentation processes. In addition to its fundamental nature, the study of electron-molecule collisions is also motivated by its relation to other fields of study and by its technological appli cations. The study of planetary atmospheres and the interstellar medium necessarily involve collision processes of electrons with molecules and molecular ions.
Publisher: Springer Science & Business Media
ISBN: 1475797974
Category : Science
Languages : en
Pages : 374
Book Description
The collision of electrons with molecules and molecular ions is a fundamental pro cess in atomic and molecular physics and in chemistry. At high incident electron en ergies, electron-molecule collisions are used to deduce molecular geometries, oscillator strengths for optically allowed transitions, and in the case of electron-impact ionization, to probe the momentum distribution of the molecule itself. When the incident electron energy is comparable to or below those of the molecular valence electrons, the physics involved is particularly rich. Correlation and exchange effects necessary to describe such collision processes bear a close resemblance to similar efft:cts in the theory of electronic structure in molecules. Compound state formations, in the form of resonances and vir tual states, manifest themselves in experimental observables which provide details of the electron-molecule interactions. Ro-vibrational excitations by low-energy electron collisions exemplify energy transfer between the electronic and nuclear motion. The role of nonadiabatic interaction is raised here. When the final vibrational state is in the continuum, molecular dissociation occurs. Dissociative recombination and dissociative attachment are examples of such fragmentation processes. In addition to its fundamental nature, the study of electron-molecule collisions is also motivated by its relation to other fields of study and by its technological appli cations. The study of planetary atmospheres and the interstellar medium necessarily involve collision processes of electrons with molecules and molecular ions.
Lectures on Ion-Atom Collisions
Author: Jörg Eichler
Publisher: Elsevier
ISBN: 0080461115
Category : Science
Languages : en
Pages : 273
Book Description
Atomic collisions offer some unique opportunities to study atomic structure and reaction mechanisms in experiment and theory, especially for projectiles of high atomic number provided by modern accelerators. The book is meant as an introduction into the field and provides some basic theoretical understanding of the atomic processes occurring when a projectile hits another atom. It also furnishes the tools for a mathematical description, however, without going deeper into the technical details, which can be found in the literature given. With this aim, the focus is on reactions, in which only a single active electron participates. Collisional excitation, ionization and charge transfer are discussed for collision velocities ranging from slow to comparable to the speed of light. For the highest projectile velocities, energy can be converted into mass, so that electron-positron pairs are created. In addition to the systematic treatment, a theoretical section specializes on electron-electron correlations and three chapters are devoted to selected highlights bordering to surface science and to physics with antiprotons. * Simple access to the theory of collisions between ions and atoms * Systematic treatment of basic features needed for an understanding * Mathematical details are omitted and referred to references * In order to bear out the essential ideas most clearly, a single active electron is assumed in most cases * In selected examples, theoretical results are confronted with experiment * Discussion supported by a large number of illustrations * Selected highlights in borderline fields are presented
Publisher: Elsevier
ISBN: 0080461115
Category : Science
Languages : en
Pages : 273
Book Description
Atomic collisions offer some unique opportunities to study atomic structure and reaction mechanisms in experiment and theory, especially for projectiles of high atomic number provided by modern accelerators. The book is meant as an introduction into the field and provides some basic theoretical understanding of the atomic processes occurring when a projectile hits another atom. It also furnishes the tools for a mathematical description, however, without going deeper into the technical details, which can be found in the literature given. With this aim, the focus is on reactions, in which only a single active electron participates. Collisional excitation, ionization and charge transfer are discussed for collision velocities ranging from slow to comparable to the speed of light. For the highest projectile velocities, energy can be converted into mass, so that electron-positron pairs are created. In addition to the systematic treatment, a theoretical section specializes on electron-electron correlations and three chapters are devoted to selected highlights bordering to surface science and to physics with antiprotons. * Simple access to the theory of collisions between ions and atoms * Systematic treatment of basic features needed for an understanding * Mathematical details are omitted and referred to references * In order to bear out the essential ideas most clearly, a single active electron is assumed in most cases * In selected examples, theoretical results are confronted with experiment * Discussion supported by a large number of illustrations * Selected highlights in borderline fields are presented
An Introduction to the Atomic and Radiation Physics of Plasmas
Author: G. J. Tallents
Publisher: Cambridge University Press
ISBN: 1108318010
Category : Science
Languages : en
Pages : 313
Book Description
Plasmas comprise more than 99% of the observable universe. They are important in many technologies and are key potential sources for fusion power. Atomic and radiation physics is critical for the diagnosis, observation and simulation of astrophysical and laboratory plasmas, and plasma physicists working in a range of areas from astrophysics, magnetic fusion, and inertial fusion utilise atomic and radiation physics to interpret measurements. This text develops the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas from first principles using the physics of various fields of study including quantum mechanics, electricity and magnetism, and statistical physics. Linking undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research, this text adopts a highly pedagogical approach and includes numerous exercises within each chapter for students to reinforce their understanding of the key concepts.
Publisher: Cambridge University Press
ISBN: 1108318010
Category : Science
Languages : en
Pages : 313
Book Description
Plasmas comprise more than 99% of the observable universe. They are important in many technologies and are key potential sources for fusion power. Atomic and radiation physics is critical for the diagnosis, observation and simulation of astrophysical and laboratory plasmas, and plasma physicists working in a range of areas from astrophysics, magnetic fusion, and inertial fusion utilise atomic and radiation physics to interpret measurements. This text develops the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas from first principles using the physics of various fields of study including quantum mechanics, electricity and magnetism, and statistical physics. Linking undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research, this text adopts a highly pedagogical approach and includes numerous exercises within each chapter for students to reinforce their understanding of the key concepts.
Latest Advances in Atomic Cluster Collisions
Author: J. P. Connerade
Publisher: World Scientific
ISBN: 1860944957
Category : Science
Languages : en
Pages : 398
Book Description
- The first book covering a broad range of physical and chemical problems of atomic cluster physics in the context of physics of atomic and molecular collisions bull; Contains contributions from leading experts in the field bull; Considers both free and supported cluster systems bull; Provides both a general introduction to the field and describes its very recent developments -- ideal for graduate and post-graduate students new to the area as well as specialists in atomic cluster physics bull; Useful for comprehensive lecture courses in quantum mechanics, condensed matter physics and other courses in which complex finite systems like atoic clusters are relevant
Publisher: World Scientific
ISBN: 1860944957
Category : Science
Languages : en
Pages : 398
Book Description
- The first book covering a broad range of physical and chemical problems of atomic cluster physics in the context of physics of atomic and molecular collisions bull; Contains contributions from leading experts in the field bull; Considers both free and supported cluster systems bull; Provides both a general introduction to the field and describes its very recent developments -- ideal for graduate and post-graduate students new to the area as well as specialists in atomic cluster physics bull; Useful for comprehensive lecture courses in quantum mechanics, condensed matter physics and other courses in which complex finite systems like atoic clusters are relevant
Polarization and Correlation Phenomena in Atomic Collisions
Author: Vsevolod V. Balashov
Publisher: Springer Science & Business Media
ISBN: 9780306462665
Category : Science
Languages : en
Pages : 258
Book Description
"The book provides a concise description of the density matrix and statistical tensor formalism and presents a general approach to the description of angular correlation and polarization phenomena. It illustrate an application of the angular momentum technique to a broad variety of atomic processes.".
Publisher: Springer Science & Business Media
ISBN: 9780306462665
Category : Science
Languages : en
Pages : 258
Book Description
"The book provides a concise description of the density matrix and statistical tensor formalism and presents a general approach to the description of angular correlation and polarization phenomena. It illustrate an application of the angular momentum technique to a broad variety of atomic processes.".