Electron Transport in Nanosystems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Electron Transport in Nanosystems PDF full book. Access full book title Electron Transport in Nanosystems by Janez Bonca. Download full books in PDF and EPUB format.

Electron Transport in Nanosystems

Electron Transport in Nanosystems PDF Author: Janez Bonca
Publisher: Springer Science & Business Media
ISBN: 140209146X
Category : Technology & Engineering
Languages : en
Pages : 401

Book Description
Proceedings of the NATO Advanced Research Workshop on Electron Transport in Nanosystems Yalta, Ukraine 17-21 September 2007

Electron Transport in Nanosystems

Electron Transport in Nanosystems PDF Author: Janez Bonca
Publisher: Springer Science & Business Media
ISBN: 140209146X
Category : Technology & Engineering
Languages : en
Pages : 401

Book Description
Proceedings of the NATO Advanced Research Workshop on Electron Transport in Nanosystems Yalta, Ukraine 17-21 September 2007

Quantum Transport Calculations for Nanosystems

Quantum Transport Calculations for Nanosystems PDF Author: Kenji Hirose
Publisher: CRC Press
ISBN: 9814267597
Category : Science
Languages : en
Pages : 532

Book Description
As electric devices become smaller and smaller, transport simulations based on the quantum mechanics become more and more important. There are currently numerous textbooks on the basic concepts of quantum transport, but few present calculation methods in detail. This book provides various quantum transport simulation methods and shows applications

Mesoscopic Theories of Heat Transport in Nanosystems

Mesoscopic Theories of Heat Transport in Nanosystems PDF Author: Antonio Sellitto
Publisher: Springer
ISBN: 3319272063
Category : Science
Languages : en
Pages : 188

Book Description
This book presents generalized heat-conduction laws which, from a mesoscopic perspective, are relevant to new applications (especially in nanoscale heat transfer, nanoscale thermoelectric phenomena, and in diffusive-to-ballistic regime) and at the same time keep up with the pace of current microscopic research. The equations presented in the book are compatible with generalized formulations of nonequilibrium thermodynamics, going beyond the local-equilibrium. The book includes six main chapters, together with a preface and a final section devoted to the future perspectives, as well as an extensive bibliography.

Nonlinear Dynamics of Nanosystems

Nonlinear Dynamics of Nanosystems PDF Author: Günter Radons
Publisher: John Wiley & Sons
ISBN: 9783527629381
Category : Technology & Engineering
Languages : en
Pages : 475

Book Description
A discussion of the fundamental changes that occur when dynamical systems from the fields of nonlinear optics, solids, hydrodynamics and biophysics are scaled down to nanosize. The authors are leading scientists in the field and each of their contributions provides a broader introduction to the specific area of research. In so doing, they include both the experimental and theoretical point of view, focusing especially on the effects on the nonlinear dynamical behavior of scaling, stochasticity and quantum mechanics. For everybody working on the synthesis and integration of nanoscopic devices who sooner or later will have to learn how to deal with nonlinear effects.

Theory of Quantum Transport at Nanoscale

Theory of Quantum Transport at Nanoscale PDF Author: Dmitry Ryndyk
Publisher: Springer
ISBN: 3319240889
Category : Science
Languages : en
Pages : 251

Book Description
This book is an introduction to a rapidly developing field of modern theoretical physics – the theory of quantum transport at nanoscale. The theoretical methods considered in the book are in the basis of our understanding of charge, spin and heat transport in nanostructures and nanostructured materials and are widely used in nanoelectronics, molecular electronics, spin-dependent electronics (spintronics) and bio-electronics. The book is based on lectures for graduate and post-graduate students at the University of Regensburg and the Technische Universität Dresden (TU Dresden). The first part is devoted to the basic concepts of quantum transport: Landauer-Büttiker method and matrix Green function formalism for coherent transport, Tunneling (Transfer) Hamiltonian and master equation methods for tunneling, Coulomb blockade, vibrons and polarons. The results in this part are obtained as possible without sophisticated techniques, such as nonequilibrium Green functions, which are considered in detail in the second part. A general introduction into the nonequilibrium Green function theory is given. The approach based on the equation-of-motion technique, as well as more sophisticated one based on the Dyson-Keldysh diagrammatic technique are presented. The main attention is paid to the theoretical methods able to describe the nonequilibrium (at finite voltage) electron transport through interacting nanosystems, specifically the correlation effects due to electron-electron and electron-vibron interactions.

Bio and Nano Packaging Techniques for Electron Devices

Bio and Nano Packaging Techniques for Electron Devices PDF Author: Gerald Gerlach
Publisher: Springer Science & Business Media
ISBN: 3642285228
Category : Technology & Engineering
Languages : en
Pages : 619

Book Description
This book discusses future trends and developments in electron device packaging and the opportunities of nano and bio techniques as future solutions. It describes the effect of nano-sized particles and cell-based approaches for packaging solutions with their diverse requirements. It offers a comprehensive overview of nano particles and nano composites and their application as packaging functions in electron devices. The importance and challenges of three-dimensional design and computer modeling in nano packaging is discussed; also ways for implementation are described. Solutions for unconventional packaging solutions for metallizations and functionalized surfaces as well as new packaging technologies with high potential for industrial applications are discussed. The book brings together a comprehensive overview of nano scale components and systems comprising electronic, mechanical and optical structures and serves as important reference for industrial and academic researchers.

Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology

Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology PDF Author: Felix A Buot
Publisher: World Scientific
ISBN: 9814472972
Category : Technology & Engineering
Languages : en
Pages : 838

Book Description
This book presents the first comprehensive treatment of discrete phase-space quantum mechanics and the lattice Weyl-Wigner formulation of energy band dynamics, by the originator of these theoretical techniques. The author's quantum superfield theoretical formulation of nonequilibrium quantum physics is given in real time, without the awkward use of artificial time contour employed in previous formulations. These two main quantum theoretical techniques combine to yield general (including quasiparticle-pairing dynamics) and exact quantum transport equations in phase-space, appropriate for nanodevices. The derivation of transport formulas in mesoscopic physics from the general quantum transport equations is also treated. Pioneering nanodevices are discussed in the light of the quantum-transport physics equations, and an in-depth treatment of the physics of resonant tunneling devices is given. Operator Hilbert-space methods and quantum tomography are discussed. Discrete phase-space quantum mechanics on finite fields is treated for completeness and by virtue of its relevance to quantum computing. The phenomenological treatment of evolution superoperator and measurements is given to help clarify the general quantum transport theory. Quantum computing and information theory is covered to demonstrate the foundational aspects of discrete quantum dynamics, particularly in deriving a complete set of multiparticle entangled basis states.

Electron Correlation in New Materials and Nanosystems

Electron Correlation in New Materials and Nanosystems PDF Author: Kurt Scharnberg
Publisher: Springer Science & Business Media
ISBN: 1402056591
Category : Science
Languages : en
Pages : 429

Book Description
The articles collected in this book cover a wide range of materials with extraordinary superconducting and magnetic properties. For many of the materials studied, strong electronic correlations provide a link between these two phenomena which were long thought to be highly antagonistic. The book reports both the progress in our understanding of fundamental physical processes and the advances made towards the development of devices.

Advanced Physics of Electron Transport in Semiconductors and Nanostructures

Advanced Physics of Electron Transport in Semiconductors and Nanostructures PDF Author: Massimo V Fischetti
Publisher: Springer
ISBN: 9783319791265
Category :
Languages : en
Pages : 500

Book Description
This textbook is aimed at second-year graduate students in Physics, Electrical Engineer-ing, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale.Understanding electronic transport in solids requires some basic knowledge of Ham-iltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry.Further topics covered include: the theory of energy bands in crystals, of second quan-tization and elementary excitations in solids, of the dielectric properties of semicon-ductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconductors and semiconductor nanostructures somewhat at the quantum level, but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also about III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods applied to the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions of the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). An advanced chapter, Chapter 18, is strictly related to the 'tricky' transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green's functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation. Finally, several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. Four appendices complete the text.

Nanoelectronics

Nanoelectronics PDF Author: Avik Ghosh
Publisher: World Scientific Publishing Company
ISBN: 9813144513
Category :
Languages : en
Pages : 524

Book Description
This book is aimed at senior undergraduates, graduate students and researchers interested in quantitative understanding and modeling of nanomaterial and device physics. With the rapid slow-down of semiconductor scaling that drove information technology for decades, there is a pressing need to understand and model electron flow at its fundamental molecular limits. The purpose of this book is to enable such a deconstruction needed to design the next generation memory, logic, sensor and communication elements. Through numerous case studies and topical examples relating to emerging technology, this book connects 'top down' classical device physics taught in electrical engineering classes with 'bottom up' quantum and many-body transport physics taught in physics and chemistry. The book assumes no more than a nodding acquaintance with quantum mechanics, in addition to knowledge of freshman level mathematics. Segments of this book are useful as a textbook for a course in nano-electronics.