Author: Maurizio De Crescenzi
Publisher: World Scientific
ISBN: 9789810223007
Category : Science
Languages : en
Pages : 430
Book Description
The main purpose of this book is to provide an overview of all phenomena which can be categorized under the general label of ?electron scattering?, and to give a comprehensive description of all spectroscopical techniques related to electron scattering phenomena. Various classes of events are examined (electron in-electron out, photon in-electron out, electron in-two electron out, electron diffraction), together with the corresponding experimental techniques. A description of the underlying physics of various electron scattering phenomena is provided. For each spectroscopy, the general principles, the main fields of application, and some selected representative cases are discussed. The use of relatively low-cost electron sources is emphasized with respect to photon sources. The book is directed to PhD students and researchers not necessarily yet expert in the field.
Electron Scattering and Related Spectroscopies
Author: Maurizio De Crescenzi
Publisher: World Scientific
ISBN: 9789810223007
Category : Science
Languages : en
Pages : 430
Book Description
The main purpose of this book is to provide an overview of all phenomena which can be categorized under the general label of ?electron scattering?, and to give a comprehensive description of all spectroscopical techniques related to electron scattering phenomena. Various classes of events are examined (electron in-electron out, photon in-electron out, electron in-two electron out, electron diffraction), together with the corresponding experimental techniques. A description of the underlying physics of various electron scattering phenomena is provided. For each spectroscopy, the general principles, the main fields of application, and some selected representative cases are discussed. The use of relatively low-cost electron sources is emphasized with respect to photon sources. The book is directed to PhD students and researchers not necessarily yet expert in the field.
Publisher: World Scientific
ISBN: 9789810223007
Category : Science
Languages : en
Pages : 430
Book Description
The main purpose of this book is to provide an overview of all phenomena which can be categorized under the general label of ?electron scattering?, and to give a comprehensive description of all spectroscopical techniques related to electron scattering phenomena. Various classes of events are examined (electron in-electron out, photon in-electron out, electron in-two electron out, electron diffraction), together with the corresponding experimental techniques. A description of the underlying physics of various electron scattering phenomena is provided. For each spectroscopy, the general principles, the main fields of application, and some selected representative cases are discussed. The use of relatively low-cost electron sources is emphasized with respect to photon sources. The book is directed to PhD students and researchers not necessarily yet expert in the field.
Electron Energy-Loss Spectroscopy in the Electron Microscope
Author: R.F. Egerton
Publisher: Springer Science & Business Media
ISBN: 1475750994
Category : Science
Languages : en
Pages : 491
Book Description
to the Second Edition Since the first (1986) edition of this book, the numbers of installations, researchers, and research publications devoted to electron energy-loss spec troscopy (EELS) in the electron microscope have continued to expand. There has been a trend towards intermediate accelerating voltages and field-emission sources, both favorable to energy-loss spectroscopy, and sev eral types of energy-filtering microscope are now available commercially. Data-acquisition hardware and software, based on personal computers, have become more convenient and user-friendly. Among university re searchers, much thought has been given to the interpretation and utilization of near-edge fine structure. Most importantly, there have been many practi cal applications of EELS. This may reflect an increased awareness of the potentialities of the technique, but in many cases it is the result of skill and persistence on the part of the experimenters, often graduate students. To take account of these developments, the book has been extensively revised (over a period of two years) and more than a third of it rewritten. I have made various minor changes to the figures and added about 80 new ones. Except for a few small changes, the notation is the same as in the first edition, with all equations in SI units.
Publisher: Springer Science & Business Media
ISBN: 1475750994
Category : Science
Languages : en
Pages : 491
Book Description
to the Second Edition Since the first (1986) edition of this book, the numbers of installations, researchers, and research publications devoted to electron energy-loss spec troscopy (EELS) in the electron microscope have continued to expand. There has been a trend towards intermediate accelerating voltages and field-emission sources, both favorable to energy-loss spectroscopy, and sev eral types of energy-filtering microscope are now available commercially. Data-acquisition hardware and software, based on personal computers, have become more convenient and user-friendly. Among university re searchers, much thought has been given to the interpretation and utilization of near-edge fine structure. Most importantly, there have been many practi cal applications of EELS. This may reflect an increased awareness of the potentialities of the technique, but in many cases it is the result of skill and persistence on the part of the experimenters, often graduate students. To take account of these developments, the book has been extensively revised (over a period of two years) and more than a third of it rewritten. I have made various minor changes to the figures and added about 80 new ones. Except for a few small changes, the notation is the same as in the first edition, with all equations in SI units.
Fundamentals of Inelastic Electron Scattering
Author: P. Schattschneider
Publisher: Springer Science & Business Media
ISBN: 3709188660
Category : Technology & Engineering
Languages : en
Pages : 205
Book Description
Electron energy loss spectroscopy (ELS) is a vast subject with a long and honorable history. The problem of stopping power for high energy particles interested the earliest pioneers of quantum mechanics such as Bohr and Bethe, who laid the theoretical foun dations of the subject. The experimental origins might perhaps be traced to the original Franck-Hertz experiment. The modern field includes topics as diverse as low energy reflection electron energy loss studies of surface vibrational modes, the spectroscopy of gases and the modern theory of plasmon excitation in crystals. For the study of ELS in electron microscopy, several historically distinct areas of physics are relevant, including the theory of the Debye Waller factor for virtual inelastic scattering, the use of complex optical potentials, lattice dynamics for crystalline specimens and the theory of atomic ionisation for isolated atoms. However the field of electron energy loss spectroscopy contains few useful texts which can be recommended for students. With the recent appearance of Raether's and Egerton's hooks (see text for references), we have for the first time both a comprehensive review text-due to Raether-and a lucid introductory text which emphasizes experimental aspects-due to Egerton. Raether's text tends to emphasize the recent work on surface plasmons, while the strength of Egerton's book is its treatment of inner shell excitations for microanalysis, based on the use of atomic wavefunctions for crystal electrons.
Publisher: Springer Science & Business Media
ISBN: 3709188660
Category : Technology & Engineering
Languages : en
Pages : 205
Book Description
Electron energy loss spectroscopy (ELS) is a vast subject with a long and honorable history. The problem of stopping power for high energy particles interested the earliest pioneers of quantum mechanics such as Bohr and Bethe, who laid the theoretical foun dations of the subject. The experimental origins might perhaps be traced to the original Franck-Hertz experiment. The modern field includes topics as diverse as low energy reflection electron energy loss studies of surface vibrational modes, the spectroscopy of gases and the modern theory of plasmon excitation in crystals. For the study of ELS in electron microscopy, several historically distinct areas of physics are relevant, including the theory of the Debye Waller factor for virtual inelastic scattering, the use of complex optical potentials, lattice dynamics for crystalline specimens and the theory of atomic ionisation for isolated atoms. However the field of electron energy loss spectroscopy contains few useful texts which can be recommended for students. With the recent appearance of Raether's and Egerton's hooks (see text for references), we have for the first time both a comprehensive review text-due to Raether-and a lucid introductory text which emphasizes experimental aspects-due to Egerton. Raether's text tends to emphasize the recent work on surface plasmons, while the strength of Egerton's book is its treatment of inner shell excitations for microanalysis, based on the use of atomic wavefunctions for crystal electrons.
Electron Scattering
Author: Colm T. Whelan
Publisher: Springer Science & Business Media
ISBN: 9780306487019
Category : Science
Languages : en
Pages : 362
Book Description
There is a unity to physics; it is a discipline which provides the most fundamental understanding of the dynamics of matter and energy. To understand anything about a physical system you have to interact with it and one of the best ways to learn something is to use electrons as probes. This book is the result of a meeting, which took place in Magdalene College Cambridge in December 2001. Atomic, nuclear, cluster, soHd state, chemical and even bio- physicists got together to consider scattering electrons to explore matter in all its forms. Theory and experiment were represented in about equal measure. It was meeting marked by the most lively of discussions and the free exchange of ideas. We all learnt a lot. The Editors are grateful to EPSRC through its Collaborative Computational Project program (CCP2), lOPP, the Division of Atomic, Molecular, Optical and Plasma Physics (DAMOPP) and the Atomic Molecular Interactions group (AMIG) of the Institute of Physics for financial support. The smooth running of the meeting was enormously facilitated by the efficiency and helpfulness of the staff of Magdalene College, for which we are extremely grateful. This meeting marked the end for one of us (CTW) of a ten-year period as a fellow of the College and he would like to take this opportunity to thank the fellows and staff for the privilege of working with them.
Publisher: Springer Science & Business Media
ISBN: 9780306487019
Category : Science
Languages : en
Pages : 362
Book Description
There is a unity to physics; it is a discipline which provides the most fundamental understanding of the dynamics of matter and energy. To understand anything about a physical system you have to interact with it and one of the best ways to learn something is to use electrons as probes. This book is the result of a meeting, which took place in Magdalene College Cambridge in December 2001. Atomic, nuclear, cluster, soHd state, chemical and even bio- physicists got together to consider scattering electrons to explore matter in all its forms. Theory and experiment were represented in about equal measure. It was meeting marked by the most lively of discussions and the free exchange of ideas. We all learnt a lot. The Editors are grateful to EPSRC through its Collaborative Computational Project program (CCP2), lOPP, the Division of Atomic, Molecular, Optical and Plasma Physics (DAMOPP) and the Atomic Molecular Interactions group (AMIG) of the Institute of Physics for financial support. The smooth running of the meeting was enormously facilitated by the efficiency and helpfulness of the staff of Magdalene College, for which we are extremely grateful. This meeting marked the end for one of us (CTW) of a ten-year period as a fellow of the College and he would like to take this opportunity to thank the fellows and staff for the privilege of working with them.
Electron Spectroscopy for Surface Analysis
Author: H. Ibach
Publisher: Springer Science & Business Media
ISBN: 3642810993
Category : Science
Languages : en
Pages : 265
Book Description
The development of surface physics and surface chemistry as a science is closely related to the technical development of a number of methods involving electrons either as an excitation source or as an emitted particle carrying characteristic information. Many of these various kinds of electron spectroscopies have become commercially available and have made their way into industrial laboratories. Others are still in an early stage, but may become of increasing importance in the future. In this book an assessment of the various merits and possible drawbacks of the most frequently used electron spectroscopies is attempted. Emphasis is put on prac tical examples and experimental design rather than on theoretical considerations. The book addresses itself to the reader who wishes to know which electron spectroscopy or which combination of different electron spectroscopies he may choose for the particular problems under investigation. After a brief introduction the practical design of electron spectrometers and their figures of merit important for the different applications are discussed in Chapter 2. Chapter 3 deals with electron excited electron spectroscopies which are used for the elemental analysis of surfaces. Structure analysis by electron diffrac tion is described in Chapter 4 with special emphasis on the use of electron diffrac tion for the investigation of surface imperfections. For the application of electron diffraction to surface crystallography in general, the reader is referred to Volume 4 of "Topics in Applied Physics".
Publisher: Springer Science & Business Media
ISBN: 3642810993
Category : Science
Languages : en
Pages : 265
Book Description
The development of surface physics and surface chemistry as a science is closely related to the technical development of a number of methods involving electrons either as an excitation source or as an emitted particle carrying characteristic information. Many of these various kinds of electron spectroscopies have become commercially available and have made their way into industrial laboratories. Others are still in an early stage, but may become of increasing importance in the future. In this book an assessment of the various merits and possible drawbacks of the most frequently used electron spectroscopies is attempted. Emphasis is put on prac tical examples and experimental design rather than on theoretical considerations. The book addresses itself to the reader who wishes to know which electron spectroscopy or which combination of different electron spectroscopies he may choose for the particular problems under investigation. After a brief introduction the practical design of electron spectrometers and their figures of merit important for the different applications are discussed in Chapter 2. Chapter 3 deals with electron excited electron spectroscopies which are used for the elemental analysis of surfaces. Structure analysis by electron diffrac tion is described in Chapter 4 with special emphasis on the use of electron diffrac tion for the investigation of surface imperfections. For the application of electron diffraction to surface crystallography in general, the reader is referred to Volume 4 of "Topics in Applied Physics".
Electron Scattering And Related Spectroscopies
Author: Maurizio De Crescenzi
Publisher: World Scientific
ISBN: 9814500305
Category : Science
Languages : en
Pages : 427
Book Description
The main purpose of this book is to provide an overview of all phenomena which can be categorized under the general label of “electron scattering”, and to give a comprehensive description of all spectroscopical techniques related to electron scattering phenomena. Various classes of events are examined (electron in-electron out, photon in-electron out, electron in-two electron out, electron diffraction), together with the corresponding experimental techniques. A description of the underlying physics of various electron scattering phenomena is provided. For each spectroscopy, the general principles, the main fields of application, and some selected representative cases are discussed. The use of relatively low-cost electron sources is emphasized with respect to photon sources. The book is directed to PhD students and researchers not necessarily yet expert in the field.
Publisher: World Scientific
ISBN: 9814500305
Category : Science
Languages : en
Pages : 427
Book Description
The main purpose of this book is to provide an overview of all phenomena which can be categorized under the general label of “electron scattering”, and to give a comprehensive description of all spectroscopical techniques related to electron scattering phenomena. Various classes of events are examined (electron in-electron out, photon in-electron out, electron in-two electron out, electron diffraction), together with the corresponding experimental techniques. A description of the underlying physics of various electron scattering phenomena is provided. For each spectroscopy, the general principles, the main fields of application, and some selected representative cases are discussed. The use of relatively low-cost electron sources is emphasized with respect to photon sources. The book is directed to PhD students and researchers not necessarily yet expert in the field.
Raman Spectroscopy in Graphene Related Systems
Author: Ado Jorio
Publisher: John Wiley & Sons
ISBN: 3527643907
Category : Science
Languages : en
Pages : 319
Book Description
Raman spectroscopy is the inelastic scattering of light by matter. Being highly sensitive to the physical and chemical properties of materials, as well as to environmental effects that change these properties, Raman spectroscopy is now evolving into one of the most important tools for nanoscience and nanotechnology. In contrast to usual microscopyrelated techniques, the advantages of using light for nanoscience relate to both experimental and fundamental aspects.
Publisher: John Wiley & Sons
ISBN: 3527643907
Category : Science
Languages : en
Pages : 319
Book Description
Raman spectroscopy is the inelastic scattering of light by matter. Being highly sensitive to the physical and chemical properties of materials, as well as to environmental effects that change these properties, Raman spectroscopy is now evolving into one of the most important tools for nanoscience and nanotechnology. In contrast to usual microscopyrelated techniques, the advantages of using light for nanoscience relate to both experimental and fundamental aspects.
Electron Paramagnetic Resonance Spectroscopy
Author: Patrick Bertrand
Publisher: Springer Nature
ISBN: 3030396630
Category : Science
Languages : en
Pages : 433
Book Description
Although originally invented and employed by physicists, electron paramagnetic resonance (EPR) spectroscopy has proven to be a very efficient technique for studying a wide range of phenomena in many fields, such as chemistry, biochemistry, geology, archaeology, medicine, biotechnology, and environmental sciences. Acknowledging that not all studies require the same level of understanding of this technique, this book thus provides a practical treatise clearly oriented toward applications, which should be useful to students and researchers of various levels and disciplines. In this book, the principles of continuous wave EPR spectroscopy are progressively, but rigorously, introduced, with emphasis on interpretation of the collected spectra. Each chapter is followed by a section highlighting important points for applications, together with exercises solved at the end of the book. A glossary defines the main terms used in the book, and particular topics, whose knowledge is not required for understanding the main text, are developed in appendices for more inquisitive readers.
Publisher: Springer Nature
ISBN: 3030396630
Category : Science
Languages : en
Pages : 433
Book Description
Although originally invented and employed by physicists, electron paramagnetic resonance (EPR) spectroscopy has proven to be a very efficient technique for studying a wide range of phenomena in many fields, such as chemistry, biochemistry, geology, archaeology, medicine, biotechnology, and environmental sciences. Acknowledging that not all studies require the same level of understanding of this technique, this book thus provides a practical treatise clearly oriented toward applications, which should be useful to students and researchers of various levels and disciplines. In this book, the principles of continuous wave EPR spectroscopy are progressively, but rigorously, introduced, with emphasis on interpretation of the collected spectra. Each chapter is followed by a section highlighting important points for applications, together with exercises solved at the end of the book. A glossary defines the main terms used in the book, and particular topics, whose knowledge is not required for understanding the main text, are developed in appendices for more inquisitive readers.
Encyclopedia of Spectroscopy and Spectrometry
Author:
Publisher: Academic Press
ISBN: 0128032251
Category : Science
Languages : en
Pages : 3716
Book Description
This third edition of the Encyclopedia of Spectroscopy and Spectrometry, Three Volume Set provides authoritative and comprehensive coverage of all aspects of spectroscopy and closely related subjects that use the same fundamental principles, including mass spectrometry, imaging techniques and applications. It includes the history, theoretical background, details of instrumentation and technology, and current applications of the key areas of spectroscopy. The new edition will include over 80 new articles across the field. These will complement those from the previous edition, which have been brought up-to-date to reflect the latest trends in the field. Coverage in the third edition includes: Atomic spectroscopy Electronic spectroscopy Fundamentals in spectroscopy High-Energy spectroscopy Magnetic resonance Mass spectrometry Spatially-resolved spectroscopic analysis Vibrational, rotational and Raman spectroscopies The new edition is aimed at professional scientists seeking to familiarize themselves with particular topics quickly and easily. This major reference work continues to be clear and accessible and focus on the fundamental principles, techniques and applications of spectroscopy and spectrometry. Incorporates more than 150 color figures, 5,000 references, and 300 articles for a thorough examination of the field Highlights new research and promotes innovation in applied areas ranging from food science and forensics to biomedicine and health Presents a one-stop resource for quick access to answers and an in-depth examination of topics in the spectroscopy and spectrometry arenas
Publisher: Academic Press
ISBN: 0128032251
Category : Science
Languages : en
Pages : 3716
Book Description
This third edition of the Encyclopedia of Spectroscopy and Spectrometry, Three Volume Set provides authoritative and comprehensive coverage of all aspects of spectroscopy and closely related subjects that use the same fundamental principles, including mass spectrometry, imaging techniques and applications. It includes the history, theoretical background, details of instrumentation and technology, and current applications of the key areas of spectroscopy. The new edition will include over 80 new articles across the field. These will complement those from the previous edition, which have been brought up-to-date to reflect the latest trends in the field. Coverage in the third edition includes: Atomic spectroscopy Electronic spectroscopy Fundamentals in spectroscopy High-Energy spectroscopy Magnetic resonance Mass spectrometry Spatially-resolved spectroscopic analysis Vibrational, rotational and Raman spectroscopies The new edition is aimed at professional scientists seeking to familiarize themselves with particular topics quickly and easily. This major reference work continues to be clear and accessible and focus on the fundamental principles, techniques and applications of spectroscopy and spectrometry. Incorporates more than 150 color figures, 5,000 references, and 300 articles for a thorough examination of the field Highlights new research and promotes innovation in applied areas ranging from food science and forensics to biomedicine and health Presents a one-stop resource for quick access to answers and an in-depth examination of topics in the spectroscopy and spectrometry arenas
Handbook of Infrared Spectroscopy of Ultrathin Films
Author: Valeri P. Tolstoy
Publisher: John Wiley & Sons
ISBN: 0471461830
Category : Technology & Engineering
Languages : en
Pages : 710
Book Description
Because of the rapid increase in commercially available Fouriertransform infrared spectrometers and computers over the past tenyears, it has now become feasible to use IR spectrometry tocharacterize very thin films at extended interfaces. At the sametime, interest in thin films has grown tremendously because ofapplications in microelectronics, sensors, catalysis, andnanotechnology. The Handbook of Infrared Spectroscopy of UltrathinFilms provides a practical guide to experimental methods,up-to-date theory, and considerable reference data, critical forscientists who want to measure and interpret IR spectra ofultrathin films. This authoritative volume also: Offers informationneeded to effectively apply IR spectroscopy to the analysis andevaluation of thin and ultrathin films on flat and rough surfacesand on powders at solid-gaseous, solid-liquid, liquid-gaseous,liquid-liquid, and solid-solid interfaces. Provides full discussion of theory underlying techniques Describes experimental methods in detail, including optimumconditions for recording spectra and the interpretation ofspectra Gives detailed information on equipment, accessories, andtechniques Provides IR spectroscopic data tables as appendixes, includingthe first compilation of published data on longitudinal frequenciesof different substances Covers new approaches, such as Surface Enhanced IR spectroscopy(SEIR), time-resolved FTIR spectroscopy, high-resolutionmicrospectroscopy and using synchotron radiation
Publisher: John Wiley & Sons
ISBN: 0471461830
Category : Technology & Engineering
Languages : en
Pages : 710
Book Description
Because of the rapid increase in commercially available Fouriertransform infrared spectrometers and computers over the past tenyears, it has now become feasible to use IR spectrometry tocharacterize very thin films at extended interfaces. At the sametime, interest in thin films has grown tremendously because ofapplications in microelectronics, sensors, catalysis, andnanotechnology. The Handbook of Infrared Spectroscopy of UltrathinFilms provides a practical guide to experimental methods,up-to-date theory, and considerable reference data, critical forscientists who want to measure and interpret IR spectra ofultrathin films. This authoritative volume also: Offers informationneeded to effectively apply IR spectroscopy to the analysis andevaluation of thin and ultrathin films on flat and rough surfacesand on powders at solid-gaseous, solid-liquid, liquid-gaseous,liquid-liquid, and solid-solid interfaces. Provides full discussion of theory underlying techniques Describes experimental methods in detail, including optimumconditions for recording spectra and the interpretation ofspectra Gives detailed information on equipment, accessories, andtechniques Provides IR spectroscopic data tables as appendixes, includingthe first compilation of published data on longitudinal frequenciesof different substances Covers new approaches, such as Surface Enhanced IR spectroscopy(SEIR), time-resolved FTIR spectroscopy, high-resolutionmicrospectroscopy and using synchotron radiation