Electromagnetics Problem Solver PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Electromagnetics Problem Solver PDF full book. Access full book title Electromagnetics Problem Solver by . Download full books in PDF and EPUB format.

Electromagnetics Problem Solver

Electromagnetics Problem Solver PDF Author:
Publisher: Research & Education Assoc.
ISBN: 9780738671031
Category : Electromagnetism
Languages : en
Pages : 964

Book Description


Electromagnetics Problem Solver

Electromagnetics Problem Solver PDF Author:
Publisher: Research & Education Assoc.
ISBN: 9780738671031
Category : Electromagnetism
Languages : en
Pages : 964

Book Description


The Electromagnetics Problem Solver

The Electromagnetics Problem Solver PDF Author: Max Fogiel
Publisher: Research & Education Assoc.
ISBN:
Category : Electromagnetism
Languages : en
Pages : 962

Book Description


Electromagnetics

Electromagnetics PDF Author: Editors of Rea
Publisher:
ISBN: 9780878915507
Category :
Languages : en
Pages : 960

Book Description
Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies. Here in this highly useful reference is the finest overview of electromagnetics currently available, with hundreds of electromagnetics problems that cover everything from dielectrics and magnetic fields to plane waves and transmission lines. Each problem is clearly solved with step-by-step detailed solutions. DETAILS - The PROBLEM SOLVERS are unique - the ultimate in study guides. - They are ideal for helping students cope with the toughest subjects. - They greatly simplify study and learning tasks. - They enable students to come to grips with difficult problems by showing them the way, step-by-step, toward solving problems. As a result, they save hours of frustration and time spent on groping for answers and understanding. - They cover material ranging from the elementary to the advanced in each subject. - They work exceptionally well with any text in its field. - PROBLEM SOLVERS are available in 41 subjects. - Each PROBLEM SOLVER is prepared by supremely knowledgeable experts. - Most are over 1000 pages. - PROBLEM SOLVERS are not meant to be read cover to cover. They offer whatever may be needed at a given time. An excellent index helps to locate specific problems rapidly. TABLE OF CONTENTS Introduction SECTION I Chapter 1: Vector Analysis Scalars and Vectors Gradient, Divergence, and Curl Line, Surface, and Volume Integrals Stoke's Theorem Chapter 2: Electric Charges Charge Densities and Distributions Coulomb's Law Electric Field Chapter 3: Electric Field Intensity Electric Flux Gauss's Law Charges Chapter 4: Potential Work Potential Potential and Gradient Motion in Electric Field Energy Chapter 5: Dielectrics Current Density Resistance Polarization Boundary Conditions Dielectrics Chapter 6: Capacitance Capacitance Parallel Plate Capacitors Coaxial and Concentric Capacitors Multiple Dielectric Capacitors, Series and Parallel Combinations Potential Stored Energy and Force in Capacitors Chapter 7: Poisson's and Laplace Equations Laplace's Equation Poisson's Equation Iteration Method Images Chapter 8: Steady Magnetic Fields Biot-Savart's Law Ampere's Law Magnetic Flux and Flux Density Vector Magnetic Potential H-Field Chapter 9: Forces in Steady Magnetic Fields Forces on Moving Charges Forces on Differential Current Elements Forces on Conductors Carrying Currents Magnetization Magnetic Boundary Conditions Potential Energy of Magnetic Fields Chapter 10: Magnetic Circuits Reluctance and Permeance Determination of Ampere-Turns Flux Produced by a Given mmf Self and Mutual Inductance Force and Torque in Magnetic Circuits Chapter 11: Time - Varying Fields and Maxwell's Equations Faraday's Law Maxwell's Equations Displacement Current Generators Chapter 12: Plane Waves Energy and the Poynting Vector Normal Incidence Boundary Conditions Plane Waves in Conducting Dielectric Media Plane Waves in Free Space Plane Waves and Current Density Chapter 13: Transmission Lines Equations of Transmission Lines Input Impedances Smith Chart Matching Reflection Coefficient Chapter 14: Wave Guides and Antennas Cutoff Frequencies for TE and TM Modes Propagation and Attenuation Constants Field Components in Wave-Guides Absorbed and Transmitted Power Characteristics of Antennas Radiated and Absorbed Power of Antennas SECTION II - Summary of Electromagnetic Propagation in Conducting Media II-1 Basic Equations and Theorems Maxwell's Equation Auxiliary Potentials Harmonic Time Variation Particular Solutions for an Unbounded Homogenous Region with Sources Poynting Vector Reciprocity Theorem Boundary Conditions Uniqueness Theorems TM and TE Field Analysis II-2 Plane Waves Uniform Plane Waves Nonuniform Plane Waves Reflection and Refraction at a Plane Surface Refraction in a Conducting Medium Surface Waves Plane Waves in Layered Media Impedance Boundary Conditions Propogation into a conductor with a Rough Surface II-3 Electromagnetic Field of Dipole Sources Infinite Homogenous Conducting Medium Semi-Infinite Homogenous Conducting Medium Static Electric Dipole Harmonic Dipole Sources Far Field Near Field Quasi-Static Field Layered Conducting Half Space II-4 Electromagnetic Field of Long Line Sources and Finite Length Electric Antennas Infinite Homogenous Conducting Medium Long Line Source Finite Length Electric Antenna Semi-Infinite Homogenous Conducting Medium Long Line Source Finite Length Electric Antenna Layered Conducting Half Space Long Line Source Finite Length Electric Antenna Appendix Parameters of Conducting Media Dipole Approximation Scattering Antenna Impedance ELF and VLF Atmospheric Noise Index WHAT THIS BOOK IS FOR Students have generally found electromagnetics a difficult subject to understand and learn. Despite the publication of hundreds of textbooks in this field, each one intended to provide an improvement over previous textbooks, students of electromagnetics continue to remain perplexed as a result of numerous subject areas that must be remembered and correlated when solving problems. Various interpretations of electromagnetics terms also contribute to the difficulties of mastering the subject. In a study of electromagnetics, REA found the following basic reasons underlying the inherent difficulties of electromagnetics: No systematic rules of analysis were ever developed to follow in a step-by-step manner to solve typically encountered problems. This results from numerous different conditions and principles involved in a problem which leads to many possible different solution methods. To prescribe a set of rules for each of the possible variations would involve an enormous number of additional steps, making this task more burdensome than solving the problem directly due to the expectation of much trial and error. Current textbooks normally explain a given principle in a few pages written by an electromagnetics professional who has insight into the subject matter not shared by others. These explanations are often written in an abstract manner that causes confusion as to the principle's use and application. Explanations then are often not sufficiently detailed or extensive enough to make the reader aware of the wide range of applications and different aspects of the principle being studied. The numerous possible variations of principles and their applications are usually not discussed, and it is left to the reader to discover this while doing exercises. Accordingly, the average student is expected to rediscover that which has long been established and practiced, but not always published or adequately explained. The examples typically following the explanation of a topic are too few in number and too simple to enable the student to obtain a thorough grasp of the involved principles. The explanations do not provide sufficient basis to solve problems that may be assigned for homework or given on examinations. Poorly solved examples such as these can be presented in abbreviated form which leaves out much explanatory material between steps, and as a result requires the reader to figure out the missing information. This leaves the reader with an impression that the problems and even the subject are hard to learn - completely the opposite of what an example is supposed to do. Poor examples are often worded in a confusing or obscure way. They might not state the nature of the problem or they present a solution, which appears to have no direct relation to the problem. These problems usually offer an overly general discussion - never revealing how or what is to be solved. Many examples do not include accompanying diagrams or graphs, denying the reader the exposure necessary for drawing good diagrams and graphs. Such practice only strengthens understanding by simplifying and organizing electromagnetics processes. Students can learn the subject only by doing the exercises themselves and reviewing them in class, obtaining experience in applying the principles with their different ramifications. In doing the exercises by themselves, students find that they are required to devote considerable more time to electromagnetics than to other subjects, because they are uncertain with regard to the selection and application of the theorems and principles involved. It is also often necessary for students to discover those "tricks" not revealed in their texts (or review books) that make it possible to solve problems easily. Students must usually resort to methods of trial and error to discover these "tricks," therefore finding out that they may sometimes spend several hours to solve a single problem. When reviewing the exercises in classrooms, instructors usually request students to take turns in writing solutions on the boards and explaining them to the class. Students often find it difficult to explain in a manner that holds the interest of the class, and enables the remaining students to follow the material written on the boards. The remaining students in the class are thus too occupied with copying the material off the boards to follow the professor's explanations. This book is intended to aid students in electromagnetics overcome the difficulties described by supplying detailed illustrations of the solution methods that are usually not apparent to students. Solution methods are illustrated by problems that have been selected from those most often assigned for class work and given on examinations. The problems are arranged in order of complexity to enable students to learn and understand a particular topic by reviewing the problems in sequence. The problems are illustrated with detailed, step-by-step explanations, to save the students large amounts of time that is often needed to fill in the gaps that are usually found between steps of illustrations in textbooks or review/outline books. The staff of REA considers electromagnetics a subject that is best learned by allowing students to view the methods of analysis and solution techniques. This learning approach is similar to that practiced in various scientific laboratories, particularly in the medical fields. In using this book, students may review and study the illustrated problems at their own pace; students are not limited to the time such problems receive in the classroom. When students want to look up a particular type of problem and solution, they can readily locate it in the book by referring to the index that has been extensively prepared. It is also possible to locate a particular type of problem by glancing at just the material within the boxed portions. Each problem is numbered and surrounded by a heavy black border for speedy identification.

Problems and Solutions on Electromagnetism

Problems and Solutions on Electromagnetism PDF Author: Yung-kuo Lim
Publisher: World Scientific
ISBN: 9789810206260
Category : Science
Languages : en
Pages : 702

Book Description
Electrostatics - Magnetostatic field and quasi-stationary electromagnetic fields - Circuit analysis - Electromagnetic waves - Relativity, particle-field interactions.

Problem Solving in Electromagnetics, Microwave Circuit, and Antenna Design for Communications Engineering

Problem Solving in Electromagnetics, Microwave Circuit, and Antenna Design for Communications Engineering PDF Author: Karl F. Warnick
Publisher: Artech House Publishers
ISBN:
Category : Science
Languages : en
Pages : 384

Book Description
Presenting a wide range of real-world electromagnetics problems, this one-of-a-kind resource offers professionals and students complete, step-by-step solutions to the most critical challenges relating to antenna and microwave circuit design. The book serves as a practical standalone reference or as a perfect complement to the text Electromagnetics, Microwave Circuit, and Antenna Design for Communications Engineering, Second Edition by Peter Russer (Artech House, 2006). Readers find in-depth coverage of the concepts, methods and theorems they need to understand to effectively tackle critical problems in the field. Including numerous graphical illustrations and simplifying mathematical computations, the book offers a deep and intuitive understanding of the subject.

Problems And Solutions In Special Relativity And Electromagnetism

Problems And Solutions In Special Relativity And Electromagnetism PDF Author: Sergei Kruchinin
Publisher: World Scientific Publishing Company
ISBN: 981322729X
Category : Science
Languages : en
Pages : 148

Book Description
Field theory is an important topic in theoretical physics, which is studied in the physical and physico-mathematical departments of universities. Therefore, lecturers are faced with the urgent task of not only providing students with information about the subject, but also to help them master the material at a deep qualitative level, by presenting the specific features of general approaches to the statement and the solution of problems in theoretical physics. One of the ways to study field theory is the practical one, where the students can deepen their knowledge of the theoretical material and develop problem-solving skills. This book includes a concise theoretical summary of the main branches of field theory and electrodynamics, worked examples, and some problems for the student to solve.The book is written for students of theoretical and applied physics, and corresponds to the curricula of the theoretical courses 'Field theory' and 'Electrodynamics' for physics undergraduates. It can also be useful for students of other disciplines, in particular, those in which physics is one of the base subjects.

Computational Electromagnetics

Computational Electromagnetics PDF Author: Anders Bondeson
Publisher: Springer Science & Business Media
ISBN: 0387261583
Category : Mathematics
Languages : en
Pages : 232

Book Description
Describes most popular computational methods used to solve problems in electromagnetics Matlab code is included throughout, so that the reader can implement the various techniques discussed Exercises included

Numerical Techniques in Electromagnetics, Second Edition

Numerical Techniques in Electromagnetics, Second Edition PDF Author: Matthew N.O. Sadiku
Publisher: CRC Press
ISBN: 9780849313950
Category : Technology & Engineering
Languages : en
Pages : 764

Book Description
As the availability of powerful computer resources has grown over the last three decades, the art of computation of electromagnetic (EM) problems has also grown - exponentially. Despite this dramatic growth, however, the EM community lacked a comprehensive text on the computational techniques used to solve EM problems. The first edition of Numerical Techniques in Electromagnetics filled that gap and became the reference of choice for thousands of engineers, researchers, and students. The Second Edition of this bestselling text reflects the continuing increase in awareness and use of numerical techniques and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite difference time domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. The author also added a chapter on the method of lines. Numerical Techniques in Electromagnetics continues to teach readers how to pose, numerically analyze, and solve EM problems, give them the ability to expand their problem-solving skills using a variety of methods, and prepare them for research in electromagnetism. Now the Second Edition goes even further toward providing a comprehensive resource that addresses all of the most useful computation methods for EM problems.

Solved Problems in Electromagnetics

Solved Problems in Electromagnetics PDF Author: FĂ©lix Salazar Bloise
Publisher: Springer
ISBN: 3662483688
Category : Science
Languages : en
Pages : 813

Book Description
This book presents the fundamental concepts of electromagnetism through problems with a brief theoretical introduction at the beginning of each chapter. The present book has a strong didactic character. It explains all the mathematical steps and the theoretical concepts connected with the development of the problem. It guides the reader to understand the employed procedures to learn to solve the exercises independently. The exercises are structured in a similar way: The chapters begin with easy problems increasing progressively in the level of difficulty. This book is written for students of physics and engineering in the framework of the new European Plans of Study for Bachelor and Master and also for tutors and lecturers.

Inverse Problems in Electric Circuits and Electromagnetics

Inverse Problems in Electric Circuits and Electromagnetics PDF Author: N.V. Korovkin
Publisher: Springer Science & Business Media
ISBN: 0387460470
Category : Technology & Engineering
Languages : en
Pages : 339

Book Description
This is the first book to offer a comprehensive exploration of new methods in inverse problems in electromagnetics. The book provides systematic descriptions of the most important practical inverse problems, and details new methods to solve them. Also included are descriptions of the properties of inverse problems and known solutions, as well as reviews of the practical implementation of these methods in electric circuit theory and electromagnetic fields theory. This comprehensive collection of modern theoretical ideas and methods to solve inverse problems will be of value to both students and working professionals.