Author: A Sitenko
Publisher: Elsevier
ISBN: 0323158382
Category : Science
Languages : en
Pages : 271
Book Description
Electromagnetic Fluctuations in Plasma focuses on the theoretical investigation of the electromagnetic properties of a plasma (an ionized gas). The manuscript first takes a look at the general theory of fluctuations and electromagnetic fluctuations in media with space-time dispersion. Discussions focus on spectral distribution of the fluctuations and energy dissipation in the medium; dielectric and magnetic permittivities in a medium with spatial dispersion; current, charge, and field fluctuations in a medium; and inversion of the fluctuation-dissipation theorem. The text then examines the electrodynamic properties of an electron plasma and electromagnetic fluctuations in an electron plasma. The publication ponders on fluctuations in an electron-ion plasma and electron plasma in a magnetic field. Topics include plasma dielectric permittivity tensor in a magnetic field; longitudinal plasma oscillations in a magnetic field; fluctuations in charge and current densities in an equilibrium electron-ion plasma; and electron and ion density fluctuations in an equilibrium plasma. The text also tackles the passage of charged particles through plasma and dynamic friction and diffusion coefficients in a plasma. The book is a dependable reference for readers interested in the study of the electromagnetic properties of a plasma.
Electromagnetic Fluctuations In Plasma
Author: A Sitenko
Publisher: Elsevier
ISBN: 0323158382
Category : Science
Languages : en
Pages : 271
Book Description
Electromagnetic Fluctuations in Plasma focuses on the theoretical investigation of the electromagnetic properties of a plasma (an ionized gas). The manuscript first takes a look at the general theory of fluctuations and electromagnetic fluctuations in media with space-time dispersion. Discussions focus on spectral distribution of the fluctuations and energy dissipation in the medium; dielectric and magnetic permittivities in a medium with spatial dispersion; current, charge, and field fluctuations in a medium; and inversion of the fluctuation-dissipation theorem. The text then examines the electrodynamic properties of an electron plasma and electromagnetic fluctuations in an electron plasma. The publication ponders on fluctuations in an electron-ion plasma and electron plasma in a magnetic field. Topics include plasma dielectric permittivity tensor in a magnetic field; longitudinal plasma oscillations in a magnetic field; fluctuations in charge and current densities in an equilibrium electron-ion plasma; and electron and ion density fluctuations in an equilibrium plasma. The text also tackles the passage of charged particles through plasma and dynamic friction and diffusion coefficients in a plasma. The book is a dependable reference for readers interested in the study of the electromagnetic properties of a plasma.
Publisher: Elsevier
ISBN: 0323158382
Category : Science
Languages : en
Pages : 271
Book Description
Electromagnetic Fluctuations in Plasma focuses on the theoretical investigation of the electromagnetic properties of a plasma (an ionized gas). The manuscript first takes a look at the general theory of fluctuations and electromagnetic fluctuations in media with space-time dispersion. Discussions focus on spectral distribution of the fluctuations and energy dissipation in the medium; dielectric and magnetic permittivities in a medium with spatial dispersion; current, charge, and field fluctuations in a medium; and inversion of the fluctuation-dissipation theorem. The text then examines the electrodynamic properties of an electron plasma and electromagnetic fluctuations in an electron plasma. The publication ponders on fluctuations in an electron-ion plasma and electron plasma in a magnetic field. Topics include plasma dielectric permittivity tensor in a magnetic field; longitudinal plasma oscillations in a magnetic field; fluctuations in charge and current densities in an equilibrium electron-ion plasma; and electron and ion density fluctuations in an equilibrium plasma. The text also tackles the passage of charged particles through plasma and dynamic friction and diffusion coefficients in a plasma. The book is a dependable reference for readers interested in the study of the electromagnetic properties of a plasma.
Theory of Space Plasma Microinstabilities
Author: S. Peter Gary
Publisher: Cambridge University Press
ISBN: 9780521431675
Category : Science
Languages : en
Pages : 206
Book Description
This book describes the linear theory of waves and instabilities that propagate in a collisionless plasma.
Publisher: Cambridge University Press
ISBN: 9780521431675
Category : Science
Languages : en
Pages : 206
Book Description
This book describes the linear theory of waves and instabilities that propagate in a collisionless plasma.
Advances in the Casimir Effect
Author: Michael Bordag
Publisher: OUP Oxford
ISBN: 0191579882
Category : Science
Languages : en
Pages : 769
Book Description
The subject of this book is the Casimir effect, a manifestation of zero-point oscillations of the quantum vacuum resulting in forces acting between closely spaced bodies. For the benefit of the reader, the book assembles field-theoretical foundations of this phenomenon, applications of the general theory to real materials, and a comprehensive description of all recently performed measurements of the Casimir force with a comparison between experiment and theory. There is an urgent need for a book of this type, given the increase of interest in forces originating from the quantum vacuum. Numerous new results have been obtained in the last few years which are not reflected in previous books on the subject, but which are very promising for fundamental science and nanotechnology. The book is a unique source of information presenting a critical assessment of all the main results and approaches from hundreds of journal papers. It also outlines new ideas which have not yet been universally accepted but which are finding increasing support from experiment.
Publisher: OUP Oxford
ISBN: 0191579882
Category : Science
Languages : en
Pages : 769
Book Description
The subject of this book is the Casimir effect, a manifestation of zero-point oscillations of the quantum vacuum resulting in forces acting between closely spaced bodies. For the benefit of the reader, the book assembles field-theoretical foundations of this phenomenon, applications of the general theory to real materials, and a comprehensive description of all recently performed measurements of the Casimir force with a comparison between experiment and theory. There is an urgent need for a book of this type, given the increase of interest in forces originating from the quantum vacuum. Numerous new results have been obtained in the last few years which are not reflected in previous books on the subject, but which are very promising for fundamental science and nanotechnology. The book is a unique source of information presenting a critical assessment of all the main results and approaches from hundreds of journal papers. It also outlines new ideas which have not yet been universally accepted but which are finding increasing support from experiment.
Introduction to Plasma Physics
Author: Gerard Belmont
Publisher: Elsevier
ISBN: 0128189789
Category : Science
Languages : en
Pages : 237
Book Description
Introduction to Plasma Physics presents the latest on plasma physics. Although plasmas are not very present in our immediate environment, there are still universal phenomena that we encounter, i.e., electric shocks and galactic jets. This book presents, in parallel, the basics of plasma theory and a number of applications to laboratory plasmas or natural plasmas. It provides a fresh look at concepts already addressed in other disciplines, such as pressure and temperature. In addition, the information provided helps us understand the links between fluid theories, such as MHD and the kinetic theory of these media, especially in wave propagation. - Presents the different phenomena that make up plasma physics - Explains the basics of plasma theory - Helps readers comprehend the various concepts related to plasmas
Publisher: Elsevier
ISBN: 0128189789
Category : Science
Languages : en
Pages : 237
Book Description
Introduction to Plasma Physics presents the latest on plasma physics. Although plasmas are not very present in our immediate environment, there are still universal phenomena that we encounter, i.e., electric shocks and galactic jets. This book presents, in parallel, the basics of plasma theory and a number of applications to laboratory plasmas or natural plasmas. It provides a fresh look at concepts already addressed in other disciplines, such as pressure and temperature. In addition, the information provided helps us understand the links between fluid theories, such as MHD and the kinetic theory of these media, especially in wave propagation. - Presents the different phenomena that make up plasma physics - Explains the basics of plasma theory - Helps readers comprehend the various concepts related to plasmas
Collective Oscillations in a Plasma
Author: A. I. Akhiezer
Publisher: Elsevier
ISBN: 1483185893
Category : Science
Languages : en
Pages : 201
Book Description
International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of oscillations by modulated azimuthal currents; and cyclotron damping of low-frequency oscillations. The next chapters describe the nature of beam instability, the fluctuations in a free equilibrium plasma, and the current causing scattered waves. A study of the probability of scattering is presented. The concluding chapters are devoted to the scattering of electromagnetic waves in a plasma-beam system and the coefficient of reflection determination. The book can provide useful information to scientists, physicists, students, and researchers.
Publisher: Elsevier
ISBN: 1483185893
Category : Science
Languages : en
Pages : 201
Book Description
International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of oscillations by modulated azimuthal currents; and cyclotron damping of low-frequency oscillations. The next chapters describe the nature of beam instability, the fluctuations in a free equilibrium plasma, and the current causing scattered waves. A study of the probability of scattering is presented. The concluding chapters are devoted to the scattering of electromagnetic waves in a plasma-beam system and the coefficient of reflection determination. The book can provide useful information to scientists, physicists, students, and researchers.
Kappa Distributions
Author: George Livadiotis
Publisher: Elsevier
ISBN: 0128046392
Category : Science
Languages : en
Pages : 740
Book Description
Kappa Distributions: Theory and Applications in Plasmas presents the theoretical developments of kappa distributions, their applications in plasmas, and how they affect the underpinnings of our understanding of space and plasma physics, astrophysics, and statistical mechanics/thermodynamics. Separated into three major parts, the book covers theoretical methods, analytical methods in plasmas, and applications in space plasmas. The first part of the book focuses on basic aspects of the statistical theory of kappa distributions, beginning with their connection to the solid backgrounds of non-extensive statistical mechanics. The book then moves on to plasma physics, and is devoted to analytical methods related to kappa distributions on various basic plasma topics, spanning linear/nonlinear plasma waves, solitons, shockwaves, and dusty plasmas. The final part of the book deals with applications in space plasmas, focusing on applications of theoretical and analytical developments in space plasmas from the heliosphere and beyond, in other astrophysical plasmas. Kappa Distributions is ideal for space, plasma, and statistical physicists; geophysicists, especially of the upper atmosphere; Earth and planetary scientists; and astrophysicists. - Answers important questions, such as how plasma waves are affected by kappa distributions and how solar wind, magnetospheres, and other geophysical, space, and astrophysical plasmas can be modeled using kappa distributions - Presents the features of kappa distributions in the context of plasmas, including how kappa indices, temperatures, and densities vary among the species populations in different plasmas - Provides readers with the information they need to decide which specific formula of kappa distribution should be used for a certain occasion and system (toolbox)
Publisher: Elsevier
ISBN: 0128046392
Category : Science
Languages : en
Pages : 740
Book Description
Kappa Distributions: Theory and Applications in Plasmas presents the theoretical developments of kappa distributions, their applications in plasmas, and how they affect the underpinnings of our understanding of space and plasma physics, astrophysics, and statistical mechanics/thermodynamics. Separated into three major parts, the book covers theoretical methods, analytical methods in plasmas, and applications in space plasmas. The first part of the book focuses on basic aspects of the statistical theory of kappa distributions, beginning with their connection to the solid backgrounds of non-extensive statistical mechanics. The book then moves on to plasma physics, and is devoted to analytical methods related to kappa distributions on various basic plasma topics, spanning linear/nonlinear plasma waves, solitons, shockwaves, and dusty plasmas. The final part of the book deals with applications in space plasmas, focusing on applications of theoretical and analytical developments in space plasmas from the heliosphere and beyond, in other astrophysical plasmas. Kappa Distributions is ideal for space, plasma, and statistical physicists; geophysicists, especially of the upper atmosphere; Earth and planetary scientists; and astrophysicists. - Answers important questions, such as how plasma waves are affected by kappa distributions and how solar wind, magnetospheres, and other geophysical, space, and astrophysical plasmas can be modeled using kappa distributions - Presents the features of kappa distributions in the context of plasmas, including how kappa indices, temperatures, and densities vary among the species populations in different plasmas - Provides readers with the information they need to decide which specific formula of kappa distribution should be used for a certain occasion and system (toolbox)
Quantum Plasmas
Author: Fernando Haas
Publisher: Springer Science & Business Media
ISBN: 1441982019
Category : Science
Languages : en
Pages : 215
Book Description
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of knowledge: plasma and quantum theory. In these chapters, the quantum hydrodynamic model for plasmas, which has continuously evolved over the past decade, will be summarized to include both the development and applications of the method.
Publisher: Springer Science & Business Media
ISBN: 1441982019
Category : Science
Languages : en
Pages : 215
Book Description
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of knowledge: plasma and quantum theory. In these chapters, the quantum hydrodynamic model for plasmas, which has continuously evolved over the past decade, will be summarized to include both the development and applications of the method.
Turbulent Transport In Magnetized Plasmas (Second Edition)
Author: C Wendell Horton, Jr
Publisher: #N/A
ISBN: 9813225904
Category : Science
Languages : en
Pages : 522
Book Description
For a few seconds with large machines, scientists and engineers have now created the fusion power of the stars in the laboratory and at the same time find the rich range of complex turbulent electromagnetic waves that transport the plasma confinement systems. The turbulent transport mechanisms created in the laboratory are explained in detail in the second edition of 'Turbulent Transport in Magnetized Plasmas' by Professor Horton.The principles and properties of the major plasma confinement machines are explored with basic physics to the extent currently understood. For the observational laws that are not understood — the empirical confinement laws — offering challenges to the next generation of plasma students and researchers — are explained in detail. An example, is the confinement regime — called the 'I-mode' — currently a hot topic — is explored.Numerous important problems and puzzles for the next generation of plasma scientists are explained. There is growing demand for new simulation codes utilizing the massively parallel computers with MPI and GPU methods. When the 20 billion dollar ITER machine is tested in the 2020ies, new theories and faster/smarter computer simulations running in near real-time control systems will be used to control the burning hydrogen plasmas.
Publisher: #N/A
ISBN: 9813225904
Category : Science
Languages : en
Pages : 522
Book Description
For a few seconds with large machines, scientists and engineers have now created the fusion power of the stars in the laboratory and at the same time find the rich range of complex turbulent electromagnetic waves that transport the plasma confinement systems. The turbulent transport mechanisms created in the laboratory are explained in detail in the second edition of 'Turbulent Transport in Magnetized Plasmas' by Professor Horton.The principles and properties of the major plasma confinement machines are explored with basic physics to the extent currently understood. For the observational laws that are not understood — the empirical confinement laws — offering challenges to the next generation of plasma students and researchers — are explained in detail. An example, is the confinement regime — called the 'I-mode' — currently a hot topic — is explored.Numerous important problems and puzzles for the next generation of plasma scientists are explained. There is growing demand for new simulation codes utilizing the massively parallel computers with MPI and GPU methods. When the 20 billion dollar ITER machine is tested in the 2020ies, new theories and faster/smarter computer simulations running in near real-time control systems will be used to control the burning hydrogen plasmas.
Nuclear Science Abstracts
Introduction to Plasma Physics and Controlled Fusion
Author: Francis F. Chen
Publisher: Springer Science & Business Media
ISBN: 1475755953
Category : Science
Languages : en
Pages : 427
Book Description
TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.
Publisher: Springer Science & Business Media
ISBN: 1475755953
Category : Science
Languages : en
Pages : 427
Book Description
TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.