Electrode Integration of Nanostructured Metal and Metal Oxide Materials Based on In-situ Growth Methods for Environmental Sensors PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Electrode Integration of Nanostructured Metal and Metal Oxide Materials Based on In-situ Growth Methods for Environmental Sensors PDF full book. Access full book title Electrode Integration of Nanostructured Metal and Metal Oxide Materials Based on In-situ Growth Methods for Environmental Sensors by Xiaochen Wang. Download full books in PDF and EPUB format.

Electrode Integration of Nanostructured Metal and Metal Oxide Materials Based on In-situ Growth Methods for Environmental Sensors

Electrode Integration of Nanostructured Metal and Metal Oxide Materials Based on In-situ Growth Methods for Environmental Sensors PDF Author: Xiaochen Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 93

Book Description
In the past decades, increased human population and activities have introduced a large amount of pollutants into the environment. Various types of conventional analytical instruments were used for monitoring the emitted chemicals with low detection limit, high accuracy, and discrimination power. However, many of these methods are laboratory-based owing to sample collection, transportation, extraction, and purification steps.

Electrode Integration of Nanostructured Metal and Metal Oxide Materials Based on In-situ Growth Methods for Environmental Sensors

Electrode Integration of Nanostructured Metal and Metal Oxide Materials Based on In-situ Growth Methods for Environmental Sensors PDF Author: Xiaochen Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 93

Book Description
In the past decades, increased human population and activities have introduced a large amount of pollutants into the environment. Various types of conventional analytical instruments were used for monitoring the emitted chemicals with low detection limit, high accuracy, and discrimination power. However, many of these methods are laboratory-based owing to sample collection, transportation, extraction, and purification steps.

Metal Oxide Nanomaterials for Chemical Sensors

Metal Oxide Nanomaterials for Chemical Sensors PDF Author: Michael A. Carpenter
Publisher: Springer Science & Business Media
ISBN: 146145395X
Category : Science
Languages : en
Pages : 559

Book Description
This book presents a state-of-the-art summary and critical analysis of work recently performed in leading research laboratories around the world on the implementation of metal oxide nanomaterial research methodologies for the discovery and optimization of new sensor materials and sensing systems. The book provides a detailed description and analysis of (i) metal oxide nanomaterial sensing principles, (ii) advances in metal oxide nanomaterial synthesis/deposition methods, including colloidal, emulsification, and vapor processing techniques, (iii) analysis of techniques utilized for the development of low temperature metal oxide nanomaterial sensors, thus enabling a broader impact into sensor applications, (iv) advances, challenges and insights gained from the in situ/ex situ analysis of reaction mechanisms, and (v) technical development and integration challenges in the fabrication of sensing arrays and devices.

Chemically Modified Metal Oxide Nanostructures Electrodes for Sensing and Energy Conversion

Chemically Modified Metal Oxide Nanostructures Electrodes for Sensing and Energy Conversion PDF Author: Sami Elhag
Publisher: Linköping University Electronic Press
ISBN: 9176855902
Category :
Languages : en
Pages : 89

Book Description
The goal of this thesis is the development of scalable, low cost synthesis of metal oxide nanostructures based electrodes and to correlate the chemical modifications with their energy conversion performance. Methods in energy conversion in this thesis have focused on two aspects; a potentiometric chemical sensor was used to determine the analytical concentration of some components of the analyte solution such as dopamine, glucose and glutamate molecules. The second aspect is to fabricate a photo-electrochemical (PEC) cell. The biocompatibility, excellent electro-catalytic activities and fast electron transfer kinetics accompanied with a high surface area to volume ratio; are properties of some metal oxide nanostructures that of a potential for their use in energy conversion. Furthermore, metal oxide nanostructures based electrode can effectively be improved by the physical or a chemical modification of electrode surface. Among these metal oxide nanostructures are cobalt oxide (Co3O4), zinc oxide (ZnO), and bismuth-zincvanadate (BiZn2VO6) have all been studied in this thesis. Metal oxide nanostructures based electrodes are fabricated on gold-coated glass substrate by low temperature (< 100 0C) wet chemicalapproach. X-ray diffraction, x-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the electrodes while ultraviolet-visible absorption and photoluminescence were used to investigate the optical properties of the nanostructures. The resultant modified electrodes were tested for their performance as chemical sensors and for their efficiency in PEC activities. Efficient chemically modified electrodes were demonstrated through doping with organic additives like anionic, nonionic or cationic surfactants. The organic additives are showing a crucial role in the growth process of metal oxide nanocrystals and hence can beused to control the morphology. These organic additives act also as impurities that would significantly change the conductivity of the electrodes. However, no organic compounds dependence was observed to modify the crystallographic structure. The findings in this thesis indicate the importance of the use of controlled nanostructures morphology for developing efficient functional materials.

Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Chemically Deposited Nanocrystalline Metal Oxide Thin Films PDF Author: Fabian I. Ezema
Publisher: Springer Nature
ISBN: 3030684628
Category : Technology & Engineering
Languages : en
Pages : 926

Book Description
This book guides beginners in the areas of thin film preparation, characterization, and device making, while providing insight into these areas for experts. As chemically deposited metal oxides are currently gaining attention in development of devices such as solar cells, supercapacitors, batteries, sensors, etc., the book illustrates how the chemical deposition route is emerging as a relatively inexpensive, simple, and convenient solution for large area deposition. The advancement in the nanostructured materials for the development of devices is fully discussed.

Nanostructured Metal Oxides

Nanostructured Metal Oxides PDF Author: Enrico Traversa
Publisher: The Electrochemical Society
ISBN: 1566775094
Category : Metallic oxides
Languages : en
Pages : 250

Book Description
The use of metal oxides in nanostructured form, made possible by recent advances in their synthesis, allow the exploitation of unique physical and chemical properties of materials. This issue presents te latest advances in the controlled syntheseis and processing of nanostructured oxides, and the design, fabrication, and performance of devices that utilize them. The emphasis will be on the beneficial effects of using nanostructured materials in enviromentally-friendly applications.

Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries

Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries PDF Author: Teko Napporn
Publisher: Elsevier
ISBN: 0128184973
Category : Technology & Engineering
Languages : en
Pages : 292

Book Description
Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications

Metal Oxides in Nanocomposite-Based Electrochemical Sensors for Toxic Chemicals

Metal Oxides in Nanocomposite-Based Electrochemical Sensors for Toxic Chemicals PDF Author: A. Pandikumar
Publisher: Elsevier
ISBN: 0128209399
Category : Technology & Engineering
Languages : en
Pages : 374

Book Description
Metal oxide nanomaterials exhibit interesting electrical and photochemical properties because of their size, stability, and high surface area that render them as great choices in fabricating alternative electrode materials for electrochemical energy storage and sensor applications. The hybridization of metal oxides with other materials lead to the improvement in electrical conductivity, stability, and electron transfer kinetics during the electrocatalytic reactions. These key factors result in greater sensitivity of the sensor materials towards the analyte molecules. This book reviews the electrochemical determination of a variety of toxic chemical contaminants using metal oxide-based nanocomposite materials. Ultrasensitive and selective detection of toxic chemical contaminants is important and demanding, especially for monitoring and controlling environmental pollution. In recent years, metal oxide-based nanocomposite materials have shown high potential in the electrochemical detection of heavy metals, inorganic anions, phenolic compounds, pesticides, and chemical warfare reagents. Metal Oxides in Nanocomposite-Based Electrochemical Sensors for Toxic Chemicals comprehensively reviews this topic. In addition to the instrumental simplicity, the electrochemical methods show the improved sensor performance through the synergetic effect of metal oxide and other electroactive nanomaterial present in the nanocomposite. Thus, detailed information on the electrochemical sensing of toxic chemical contaminants using metal oxide-based nanomaterials are discussed. The recent progress in developing electrochemical sensors using metal oxide-based nanocomposite materials and perspectives on future opportunities in sensor research and development are addressed in the book. Introduces the fundamentals of electrochemical sensors and fabrication of metal oxide sensors of toxic chemicals Reviews binary, doped, metal oxide-metal, metal oxide-carbon, metal oxide-polymer, metal-boron nitride, metal oxide-clay, and metal oxide- MOF electrodes Systematically addresses the fabrication, synthesis, performance, mechanisms, detection limits, sensitivity, advantages and limitations and future perspectives of a wide range of metal oxide-based electrochemical sensors

Solution Methods for Metal Oxide Nanostructures

Solution Methods for Metal Oxide Nanostructures PDF Author: Rajaram S. Mane
Publisher: Elsevier
ISBN: 0323853323
Category : Technology & Engineering
Languages : en
Pages : 448

Book Description
Solution Methods for Metal Oxide Nanostructures reviews solution processes that are used for synthesizing 1D, 2D and 3D metal oxide nanostructures in either thin film or in powder form for various applications. Wet-chemical synthesis methods deal with chemical reactions in the solution phase using precursors at proper experimental conditions. Wet-chemical synthesis routes offer a high degree of controllability and reproducibility for 2D nanomaterial fabrication. Solvothermal synthesis, template synthesis, self-assembly, oriented attachment, hot-injection, and interface-mediated synthesis are the main wet-chemical synthesis routes for 2D nanomaterials. Solution Methods for Metal Oxide Nanostructures also addresses the thin film deposition metal oxides nanostructures, which plays a very important role in many areas of chemistry, physics and materials science.Each chapter includes information on a key solution method and their application in the design of metal oxide nanostructured materials with optimized properties for important applications. The pros and cons of the solution method and their significance and future scope is also discussed in each chapter. Readers are provided with the fundamental understanding of the key concepts of solution synthesis methods for fabricating materials and the information needed to help them select the appropriate method for the desired application. Reviews the most relevant wet chemical solution methods for metal oxide nanostructures, including sol-gel, solvothermal, hydrothermal, co-precipitation methods, and more Addresses thin film deposition techniques for metal oxide nanostructures, such as spray-pyrolysis, electrodeposition, spin coating and self-assembly Discusses the pros and cons of each solution method and its significance and future opportunities

Nanostructured Metal Oxides and Devices

Nanostructured Metal Oxides and Devices PDF Author: M. K. Jayaraj
Publisher: Springer Nature
ISBN: 9811533148
Category : Technology & Engineering
Languages : en
Pages : 348

Book Description
This book primarily covers the fundamental science, synthesis, characterization, optoelectronic properties, and applications of metal oxide nanomaterials. It discusses the basic aspects of synthetic procedures and fabrication technologies, explains the related experimental techniques and also elaborates on the current status of nanostructured oxide materials and related devices. Two major aspects of metal oxide nanostructures – their optical and electrical properties – are described in detail. The first five chapters focus on the optical characteristics of semiconducting materials, especially metal oxides at the nanoscale. The following five chapters discuss the electrical properties observed in metal oxide-based semiconductors and the status quo of device-level developments in a variety of applications such as sensors, transistors, dilute magnetic semiconductors, and dielectric materials. The basic science and mechanism behind the optoelectronic phenomena are explained in detail, to aid readers interested in the structure–property symbiosis in semiconducting nanomaterials. In short, the book offers a valuable reference guide for researchers and academics in the areas of material science and semiconductor technology, especially nanophotonics and electronics.

Nano Metal Oxides

Nano Metal Oxides PDF Author: B. Karthikeyan
Publisher: Springer Nature
ISBN: 9811994447
Category : Science
Languages : en
Pages : 122

Book Description
This book highlights theoretical and experimental facts about selective nano-metal oxides. TiO2 ,ZnO and transition metal oxides which are known to be semiconductors and find applications in various fields. This book presents about recent findings like photo catalysis, sensing ,coating and biomedical applications. Therapeutic and future applications that are recently been reported of various metal oxides are presented in this book.