Author: Alejandro A. Franco
Publisher: Springer
ISBN: 1447156773
Category : Technology & Engineering
Languages : en
Pages : 253
Book Description
The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials’ atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.
Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage
Author: Alejandro A. Franco
Publisher: Springer
ISBN: 1447156773
Category : Technology & Engineering
Languages : en
Pages : 253
Book Description
The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials’ atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.
Publisher: Springer
ISBN: 1447156773
Category : Technology & Engineering
Languages : en
Pages : 253
Book Description
The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials’ atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.
Electrochemical Devices for Energy Storage Applications
Author: Mesfin A. Kebede
Publisher: CRC Press
ISBN: 1000763870
Category : Science
Languages : en
Pages : 302
Book Description
This book explores a wide range of energy storage devices, such as a lithium ion battery, sodium ion battery, magnesium ion battery and supercapacitors. Providing a comprehensive review of the current field, it also discusses the history of these technologies and introduces next-generation rechargeable batteries and supercapacitors. This book will serve as a valuable reference for researchers working with energy storage technologies across the fields of physics, chemistry, and engineering. Features: • Edited by established authorities in the field, with chapter contributions from subject area specialists • Provides a comprehensive review of field • Up to date with the latest developments and research
Publisher: CRC Press
ISBN: 1000763870
Category : Science
Languages : en
Pages : 302
Book Description
This book explores a wide range of energy storage devices, such as a lithium ion battery, sodium ion battery, magnesium ion battery and supercapacitors. Providing a comprehensive review of the current field, it also discusses the history of these technologies and introduces next-generation rechargeable batteries and supercapacitors. This book will serve as a valuable reference for researchers working with energy storage technologies across the fields of physics, chemistry, and engineering. Features: • Edited by established authorities in the field, with chapter contributions from subject area specialists • Provides a comprehensive review of field • Up to date with the latest developments and research
Advanced Electrochemical Materials in Energy Conversion and Storage
Author: Junbo Hou
Publisher: CRC Press
ISBN: 1000544885
Category : Science
Languages : en
Pages : 395
Book Description
This book focuses on novel electrochemical materials particularly designed for specific energy applications. It presents the relationship between materials properties, state-of-the-art processing, and device performance and sheds light on the research, development, and deployment (RD&D) trend of emerging materials and technologies in this field. Features: Emphasizes electrochemical materials applied in PEM fuel cells and water splitting Summarizes anode, cathode, electrolyte, and additive materials developed for lithium-ion batteries and reviews other batteries, including lithium-air, lithium-sulfur, sodium- and potassium-ion batteries, and multivalent-ion batteries Discusses advanced carbon materials for supercapacitors Highlights catalyst design and development for CO2RR and fundamentals of proton facilitated reduction reactions With a cross-disciplinary approach, this work will be of interest to scientists and engineers across chemical engineering, mechanical engineering, materials science, chemistry, physics, and other disciplines working to advance electrochemical energy conversion and storage capabilities and applications.
Publisher: CRC Press
ISBN: 1000544885
Category : Science
Languages : en
Pages : 395
Book Description
This book focuses on novel electrochemical materials particularly designed for specific energy applications. It presents the relationship between materials properties, state-of-the-art processing, and device performance and sheds light on the research, development, and deployment (RD&D) trend of emerging materials and technologies in this field. Features: Emphasizes electrochemical materials applied in PEM fuel cells and water splitting Summarizes anode, cathode, electrolyte, and additive materials developed for lithium-ion batteries and reviews other batteries, including lithium-air, lithium-sulfur, sodium- and potassium-ion batteries, and multivalent-ion batteries Discusses advanced carbon materials for supercapacitors Highlights catalyst design and development for CO2RR and fundamentals of proton facilitated reduction reactions With a cross-disciplinary approach, this work will be of interest to scientists and engineers across chemical engineering, mechanical engineering, materials science, chemistry, physics, and other disciplines working to advance electrochemical energy conversion and storage capabilities and applications.
Carbons for Electrochemical Energy Storage and Conversion Systems
Author: Francois Beguin
Publisher: CRC Press
ISBN: 1420055402
Category : Science
Languages : en
Pages : 532
Book Description
As carbons are widely used in energy storage and conversion systems, there is a rapidly growing need for an updated book that describes their physical, chemical, and electrochemical properties. Edited by those responsible for initiating the most progressive conference on Carbon for Energy Storage and Environment Protection (CESEP), this book undoub
Publisher: CRC Press
ISBN: 1420055402
Category : Science
Languages : en
Pages : 532
Book Description
As carbons are widely used in energy storage and conversion systems, there is a rapidly growing need for an updated book that describes their physical, chemical, and electrochemical properties. Edited by those responsible for initiating the most progressive conference on Carbon for Energy Storage and Environment Protection (CESEP), this book undoub
Materials for Energy Conversion Devices
Author: C C Sorrell
Publisher: Elsevier
ISBN: 1845690915
Category : Technology & Engineering
Languages : en
Pages : 433
Book Description
As the finite capacity and pollution problems of fossil fuels grow more pressing, new sources of more sustainable energy are being developed. Materials for energy conversion devices summarises the key research on new materials which can be used to generate clean and renewable energy or to help manage problems from existing energy sources.The book discusses the range of materials that can be used to harness and convert solar energy in particular, including the properties of oxide materials and their use in producing hydrogen fuel. It covers thermoelectric materials and devices for power generation, ionic conductors and new types of fuel cell. There are also chapters on the use of such materials in the immobilisation of nuclear waste and as electrochemical gas sensors for emission control.With its distinguished editors and international team of contributors, Materials for energy conversion devices is a standard reference for all those researching and developing a new generation of materials and technologies for our energy need. - Detailed coverage of solar energy and thermoelectric conversion - Comprehensive survey of new developments in this exciting field - Edited by leading experts in the field with contributions from an international team of authors
Publisher: Elsevier
ISBN: 1845690915
Category : Technology & Engineering
Languages : en
Pages : 433
Book Description
As the finite capacity and pollution problems of fossil fuels grow more pressing, new sources of more sustainable energy are being developed. Materials for energy conversion devices summarises the key research on new materials which can be used to generate clean and renewable energy or to help manage problems from existing energy sources.The book discusses the range of materials that can be used to harness and convert solar energy in particular, including the properties of oxide materials and their use in producing hydrogen fuel. It covers thermoelectric materials and devices for power generation, ionic conductors and new types of fuel cell. There are also chapters on the use of such materials in the immobilisation of nuclear waste and as electrochemical gas sensors for emission control.With its distinguished editors and international team of contributors, Materials for energy conversion devices is a standard reference for all those researching and developing a new generation of materials and technologies for our energy need. - Detailed coverage of solar energy and thermoelectric conversion - Comprehensive survey of new developments in this exciting field - Edited by leading experts in the field with contributions from an international team of authors
Electrochemical Supercapacitors for Energy Storage and Delivery
Author: Aiping Yu
Publisher: CRC Press
ISBN: 1439869901
Category : Science
Languages : en
Pages : 373
Book Description
Although recognized as an important component of all energy storage and conversion technologies, electrochemical supercapacitators (ES) still face development challenges in order to reach their full potential. A thorough examination of development in the technology during the past decade, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications provides a comprehensive introduction to the ES from technical and practical aspects and crystallization of the technology, detailing the basics of ES as well as its components and characterization techniques. The book illuminates the practical aspects of understanding and applying the technology within the industry and provides sufficient technical detail of newer materials being developed by experts in the field which may surface in the future. The book discusses the technical challenges and the practical limitations and their associated parameters in ES technology. It also covers the structure and options for device packaging and materials choices such as electrode materials, electrolyte, current collector, and sealants based on comparison of available data. Supplying an in depth understanding of the components, design, and characterization of electrochemical supercapacitors, the book has wide-ranging appeal to industry experts and those new to the field. It can be used as a reference to apply to current work and a resource to foster ideas for new devices that will further the technology as it becomes a larger part of main stream energy storage.
Publisher: CRC Press
ISBN: 1439869901
Category : Science
Languages : en
Pages : 373
Book Description
Although recognized as an important component of all energy storage and conversion technologies, electrochemical supercapacitators (ES) still face development challenges in order to reach their full potential. A thorough examination of development in the technology during the past decade, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications provides a comprehensive introduction to the ES from technical and practical aspects and crystallization of the technology, detailing the basics of ES as well as its components and characterization techniques. The book illuminates the practical aspects of understanding and applying the technology within the industry and provides sufficient technical detail of newer materials being developed by experts in the field which may surface in the future. The book discusses the technical challenges and the practical limitations and their associated parameters in ES technology. It also covers the structure and options for device packaging and materials choices such as electrode materials, electrolyte, current collector, and sealants based on comparison of available data. Supplying an in depth understanding of the components, design, and characterization of electrochemical supercapacitors, the book has wide-ranging appeal to industry experts and those new to the field. It can be used as a reference to apply to current work and a resource to foster ideas for new devices that will further the technology as it becomes a larger part of main stream energy storage.
Electrode Materials for Energy Storage and Conversion
Author: Mesfin A. Kebede
Publisher: CRC Press
ISBN: 1000457869
Category : Science
Languages : en
Pages : 518
Book Description
This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.
Publisher: CRC Press
ISBN: 1000457869
Category : Science
Languages : en
Pages : 518
Book Description
This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.
Electrochemical Conversion Devices
Author: Defense Documentation Center (U.S.)
Publisher:
ISBN:
Category : Electric batteries
Languages : en
Pages : 158
Book Description
Publisher:
ISBN:
Category : Electric batteries
Languages : en
Pages : 158
Book Description
Electrolytes for Electrochemical Supercapacitors
Author: Cheng Zhong
Publisher: CRC Press
ISBN: 1498747574
Category : Science
Languages : en
Pages : 354
Book Description
Electrolytes for Electrochemical Supercapacitors provides a state-of-the-art overview of the research and development of novel electrolytes and electrolyte configurations and systems to increase the energy density of electrochemical supercapacitors. Comprised of chapters written by leading international scientists active in supercapacitor research
Publisher: CRC Press
ISBN: 1498747574
Category : Science
Languages : en
Pages : 354
Book Description
Electrolytes for Electrochemical Supercapacitors provides a state-of-the-art overview of the research and development of novel electrolytes and electrolyte configurations and systems to increase the energy density of electrochemical supercapacitors. Comprised of chapters written by leading international scientists active in supercapacitor research
Advanced Nanomaterials for Electrochemical Energy Conversion and Storage
Author:
Publisher: Elsevier
ISBN: 0128145595
Category : Technology & Engineering
Languages : en
Pages : 456
Book Description
Advanced Nanomaterials for Electrochemical Energy Conversion and Storage covers recent progress made in the rational design and engineering of functional nanomaterials for battery and supercapacitor applications in the forms of electrode materials, separators and electrolytes. The book includes detailed discussions of preparation methods, structural characterization, and manipulation techniques. Users will find a comprehensive illustration on the close correlation between material structures and properties, such as energy density, power density, cycle number and safety. - Provides an overview on the application of nanomaterials for energy storage and power systems - Includes a description of the fundamental aspects of the electrochemical process - Explores the new aspects of electrolyte and separator systems
Publisher: Elsevier
ISBN: 0128145595
Category : Technology & Engineering
Languages : en
Pages : 456
Book Description
Advanced Nanomaterials for Electrochemical Energy Conversion and Storage covers recent progress made in the rational design and engineering of functional nanomaterials for battery and supercapacitor applications in the forms of electrode materials, separators and electrolytes. The book includes detailed discussions of preparation methods, structural characterization, and manipulation techniques. Users will find a comprehensive illustration on the close correlation between material structures and properties, such as energy density, power density, cycle number and safety. - Provides an overview on the application of nanomaterials for energy storage and power systems - Includes a description of the fundamental aspects of the electrochemical process - Explores the new aspects of electrolyte and separator systems