Electrical Characterization of Ion-Implanted 4H-Silicon Carbide PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Electrical Characterization of Ion-Implanted 4H-Silicon Carbide PDF full book. Access full book title Electrical Characterization of Ion-Implanted 4H-Silicon Carbide by Christian Morath. Download full books in PDF and EPUB format.

Electrical Characterization of Ion-Implanted 4H-Silicon Carbide

Electrical Characterization of Ion-Implanted 4H-Silicon Carbide PDF Author: Christian Morath
Publisher:
ISBN: 9781423546870
Category :
Languages : en
Pages : 166

Book Description
Electrical characterization has been performed on ion-implanted p- type 4H-SiC to assess the activation efficiency and implantation-related damage recrystallization with the intention of developing an implantation/annealing scheme. Low doped (Na - Nd = 5x10(exp 15)/cu cm) epitaxial p-type layers grown by MOCVD were implanted with Al or B at doses ranging from 1x10(exp 13) to 1x10(exp 14)/sq cm at room temperature or 500 deg. C. The electrical technique of Temperature Dependent Hall Effect (TDHE) indicated that Al and B act as shallow acceptors 4H-SiC with ionization energies of ^252 and ^285 meV, respectively. The highest activation efficiency for Al and B implanted samples was found to occur at anneal temperatures of ^1650 deg C and ^1550 deg C, respectively. The implantation dose resulting in the highest concentration for Al and B implantation was found to be 3x10(exp 13)/sq cm. An average peak mobility of ^200 sq cm/ V s was found for an Al implanted sample; this is considerably higher than the average peak mobility for the B implanted samples, ^100 sq cm/ V s. No significant gains in activation efficiency or mobility were evident with high temperature implantation compared to the room temperature implantation. Overall, Al implantation of 4H-SiC appears superior with regard to these properties compared to B implantation.

Electrical Characterization of Ion-Implanted 4H-Silicon Carbide

Electrical Characterization of Ion-Implanted 4H-Silicon Carbide PDF Author: Christian Morath
Publisher:
ISBN: 9781423546870
Category :
Languages : en
Pages : 166

Book Description
Electrical characterization has been performed on ion-implanted p- type 4H-SiC to assess the activation efficiency and implantation-related damage recrystallization with the intention of developing an implantation/annealing scheme. Low doped (Na - Nd = 5x10(exp 15)/cu cm) epitaxial p-type layers grown by MOCVD were implanted with Al or B at doses ranging from 1x10(exp 13) to 1x10(exp 14)/sq cm at room temperature or 500 deg. C. The electrical technique of Temperature Dependent Hall Effect (TDHE) indicated that Al and B act as shallow acceptors 4H-SiC with ionization energies of ^252 and ^285 meV, respectively. The highest activation efficiency for Al and B implanted samples was found to occur at anneal temperatures of ^1650 deg C and ^1550 deg C, respectively. The implantation dose resulting in the highest concentration for Al and B implantation was found to be 3x10(exp 13)/sq cm. An average peak mobility of ^200 sq cm/ V s was found for an Al implanted sample; this is considerably higher than the average peak mobility for the B implanted samples, ^100 sq cm/ V s. No significant gains in activation efficiency or mobility were evident with high temperature implantation compared to the room temperature implantation. Overall, Al implantation of 4H-SiC appears superior with regard to these properties compared to B implantation.

Electrical Characterization of Ion-implanted 4H-silicon Carbide

Electrical Characterization of Ion-implanted 4H-silicon Carbide PDF Author: Christian P. Morath (2LT, USAF.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 292

Book Description


Electrical Characterization of Ion Implanted 6H Silicon Carbide P-N Junctions

Electrical Characterization of Ion Implanted 6H Silicon Carbide P-N Junctions PDF Author: Sharon E. Cole
Publisher:
ISBN:
Category :
Languages : en
Pages : 234

Book Description


Electrical and Optical Characterization of Intrinsic and Ion- Implantation Induced Defects in 6H- And 4H-SiC

Electrical and Optical Characterization of Intrinsic and Ion- Implantation Induced Defects in 6H- And 4H-SiC PDF Author: Michael B. Scott
Publisher:
ISBN: 9781423541486
Category : Cathodoluminescence
Languages : en
Pages : 257

Book Description
Deep level transient spectroscopy (DLTS), Hall effect, and cathodolummescence (CL) measurements are used to characterize the intrinsic and ion-implantation induced defects in high-temperature (475 and 500 deg C) ion- implanted epitaxial n-type 6H- and 4H-SiC, ion-implanted with Cr, Mg, Ar, N, and P atoms. Comparison of room-temperature and high-temperature ion-implanted 6H- SiC:Mg and :Cr indicate the significance of high-temperature ion implantation on the activation of the ion-implanted atoms and damage-recovery of the crystalline lattice. The effects of high-temperature annealing on both damage-recovery and implanted ion activation are detected and analyzed, from 1200 to 1800 degrees C. Trap parameters 0 both damage-related and species-related defects are determined by curve-fitting of DLTS rate window plots, including the identification of a 615 meV silicon-vacancy-substitutional-nitrogen defect. Double-correlated DLTS measurements indicate a one-dimensional distribution of various defects along the implantation axis and slight surface diffusion of ion-implanted magnesium during high-temperature annealing. Current-voltage-temperature measurements of 6H-SiC:Mg :Cr indicate the effect of annealing temperature and ion species on the concentration of near midgap defects. Optimum anneal temperatures are determined for activation of ion-implanted nitrogen and phosphorus. CL measurements indicate the formation of deep radiative centers in 500 degrees C ion-implanted 4H-SiC:P and :N. CL measurements also indicate the presence of a 130 meV higher energy level conduction band minimum.

Fundamentals of Silicon Carbide Technology

Fundamentals of Silicon Carbide Technology PDF Author: Tsunenobu Kimoto
Publisher: John Wiley & Sons
ISBN: 1118313550
Category : Technology & Engineering
Languages : en
Pages : 565

Book Description
A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology.

Electrical Characterization of N-type 4H Silicon Carbide with Improved Material and Interface Properties Using Advanced Doping Techniques

Electrical Characterization of N-type 4H Silicon Carbide with Improved Material and Interface Properties Using Advanced Doping Techniques PDF Author: Tomasz Śledziewski
Publisher:
ISBN:
Category : Germanium
Languages : en
Pages :

Book Description


Physics and Technology of Silicon Carbide Devices

Physics and Technology of Silicon Carbide Devices PDF Author: Yasuto Hijikata
Publisher: BoD – Books on Demand
ISBN: 9535109170
Category : Science
Languages : en
Pages : 416

Book Description
Recently, some SiC power devices such as Schottky-barrier diodes (SBDs), metal-oxide-semiconductor field-effect-transistors (MOSFETs), junction FETs (JFETs), and their integrated modules have come onto the market. However, to stably supply them and reduce their cost, further improvements for material characterizations and those for device processing are still necessary. This book abundantly describes recent technologies on manufacturing, processing, characterization, modeling, and so on for SiC devices. In particular, for explanation of technologies, I was always careful to argue physics underlying the technologies as much as possible. If this book could be a little helpful to progress of SiC devices, it will be my unexpected happiness.

Sic Materials And Devices - Volume 1

Sic Materials And Devices - Volume 1 PDF Author: Sergey Rumyantsev
Publisher: World Scientific
ISBN: 981447777X
Category : Technology & Engineering
Languages : en
Pages : 342

Book Description
After many years of research and development, silicon carbide has emerged as one of the most important wide band gap semiconductors. The first commercial SiC devices — power switching Schottky diodes and high temperature MESFETs — are now on the market. This two-volume book gives a comprehensive, up-to-date review of silicon carbide materials properties and devices. With contributions by recognized leaders in SiC technology and materials and device research, SiC Materials and Devices is essential reading for technologists, scientists and engineers who are working on silicon carbide or other wide band gap materials and devices. The volumes can also be used as supplementary textbooks for graduate courses on silicon carbide and wide band gap semiconductor technology.

SiC Materials and Devices

SiC Materials and Devices PDF Author: Michael Shur
Publisher: World Scientific
ISBN: 9812568352
Category : Technology & Engineering
Languages : en
Pages : 342

Book Description
After many years of research and development, silicon carbide has emerged as one of the most important wide band gap semiconductors. The first commercial SiC devices ? power switching Schottky diodes and high temperature MESFETs ? are now on the market. This two-volume book gives a comprehensive, up-to-date review of silicon carbide materials properties and devices. With contributions by recognized leaders in SiC technology and materials and device research, SiC Materials and Devices is essential reading for technologists, scientists and engineers who are working on silicon carbide or other wide band gap materials and devices. The volumes can also be used as supplementary textbooks for graduate courses on silicon carbide and wide band gap semiconductor technology.

Characterization of the Optical and Electrical Properties of Proton- Irradiated 4H-Silicon Carbide

Characterization of the Optical and Electrical Properties of Proton- Irradiated 4H-Silicon Carbide PDF Author: Heather C. Crockett
Publisher:
ISBN: 9781423506751
Category : Silicon carbide
Languages : en
Pages : 85

Book Description
Epitaxial n-type 4H-silicon carbide (SiC) is irradiated with 2 MeV protons to evaluate the dislocation damage effects on the optical and electrical characteristics of the material. The optical properties of the material are investigated using temperature-dependant photoluminescence (PL) and the effects of proton irradiation on the electrical properties are evaluated using current- voltage measurements and constant-voltage deep level transient spectroscopy (CV- DLTS). Subsequent high-temperature thermal annealing and recovery of the irradiated material is investigated over the temperature range of 900-1500 deg C. Proton-induced irradiation damage is apparent in the 4H-SiC material, affecting both the optical and electrical characteristics of the devices. The radiative behavior of the nitrogen-related near band edge transitions is significantly reduced as a result of the irradiation with partial recovery observed after high-temperature thermal annealing at 1500 deg C. A deeper trapping complex (EC-ET 380 meV) is detected as a result of irradiation and shows signs of activation due to thermal annealing. Initial indications taken from I-V measurements of the Schottky diodes reveal that proton irradiation followed by thermal annealing at 900 deg C may, in fact, enhance the rectifying device characteristics. Increasing the anneal temperature (TA = 1300 deg C) causes the device to fail entirely. Further annealing of the irradiated 4H-SiC at 1500 deg C demonstrates recovery in the rectifying behavior of the material. Significant levels of deep level donor traps are observed, induced by irradiation in n-type material. Three detectable defect pairs emerge with energy levels ranging from 570-730 meV below the conduction band. The trap parameters were determined using curve-fitting algorithms.