Efficient Inference of Convolutional Neural Networks on General Purpose Hardware Using Weight Repetition PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Efficient Inference of Convolutional Neural Networks on General Purpose Hardware Using Weight Repetition PDF full book. Access full book title Efficient Inference of Convolutional Neural Networks on General Purpose Hardware Using Weight Repetition by Rohit Agrawal. Download full books in PDF and EPUB format.

Efficient Inference of Convolutional Neural Networks on General Purpose Hardware Using Weight Repetition

Efficient Inference of Convolutional Neural Networks on General Purpose Hardware Using Weight Repetition PDF Author: Rohit Agrawal
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Efficient Inference of Convolutional Neural Networks on General Purpose Hardware Using Weight Repetition

Efficient Inference of Convolutional Neural Networks on General Purpose Hardware Using Weight Repetition PDF Author: Rohit Agrawal
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Convolution Neural Network Hardware Accelerator for Handwritten Digital Classification

Convolution Neural Network Hardware Accelerator for Handwritten Digital Classification PDF Author: Afwan Khan
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
This project aims to develop and test a Hardware Accelerator for a Convolutional Neural Network capable of analyzing handwritten digits. Convolutional neural networks can be defined as neural networks which make use of perceptrons for supervised learning. Image processing, natural language processing, and other cognitive tasks can be handled by CNNs. Hardware acceleration refers to the process of shifting certain computations from the general-purpose CPU to specialized components within the system, increasing the efficiency of the system beyond what is possible using software running on a general-purpose CPU alone. In general, if an application is running on a purely general-purpose CPU, certain computations are performed more efficiently than if it used a hardware accelerator. As part of this project, the model for a classifying system is designed using LeNet-based CNNs. The MNIST dataset is used to train the Python model, and then the hardware implementation is done with Xilinx Vivado Design Suite. The model is then tested on images provided by users. The aim is to use the Zynq Z7 FPGA to implement the classifier system and decrease the processing time required.

Efficient Inference Using Deep Convolutional Neural Networks on Resource-constrained Platforms

Efficient Inference Using Deep Convolutional Neural Networks on Resource-constrained Platforms PDF Author: Mohammad Motamedi
Publisher:
ISBN: 9781085572187
Category :
Languages : en
Pages :

Book Description
Deep Convolutional Neural Networks (CNNs) exhibit remarkable performance in many pattern recognition, segmentation, classification, and comprehension tasks that were widely considered open problems for most of the computing history. For example, CNNs are shown to outperform humans in certain visual object recognition tasks. Given the significant potential of CNNs in advancing autonomy and intelligence in systems, the Internet of Things (IoT) research community has witnessed a surge in demand for CNN-enabled data processing, technically referred to as inference, for critical tasks, such as visual, voice and language comprehension. Inference using modern CNNs involves billions of operations on millions of parameters, and thus their deployment requires significant compute, storage, and energy resources. However, such resources are scarce in many resource-constrained IoT applications. Designing an efficient CNN architecture is the first step in alleviating this problem. Use of asymmetric kernels, breadth control techniques, and reduce-expand structures are among the most important approaches that can effectively decrease CNNs parameter budget and their computational intensity. The architectural efficiency can be further improved by eliminating ineffective neurons using pruning algorithms, and quantizing the parameters to decrease the model size. Hardware-driven optimization is the subsequent step in addressing the computational demands of deep neural networks. Mobile System on Chips (SoCs), which usually include a mobile GPU, a DSP, and a number of CPU cores, are great candidates for CNN inference on embedded platforms. Depending on the application, it is also possible to develop customized FPGA-based and ASIC-based accelerators. ASIC-based acceleration drastically outperforms other approaches in terms of both power consumption and execution time. However, using this approach is reasonable only if designing a new chip is economically justifiable for the target application. This dissertation aims to bridge the gap between computational demands of CNNs and computational capabilities of embedded platforms. We contend that one has to strike a judicious balance between functional requirements of a CNN, and its resource requirements, for an IoT application to be able to utilize the CNN. We investigate several concrete formulations of this broad concept, and propose effective approaches for addressing the identified challenges. First, we target platforms that are equipped with reconfigurable fabric, such as Field Programmable Gate Arrays (FPGA), and offer a framework for generation of optimized FPGA-based CNN accelerators. Our solution leverages an analytical approach to characterization and exploration of the accelerator design space through which, it synthesizes an efficient accelerator for a given CNN on a specific FPGA. Second, we investigate the problem of CNN inference on mobile SoCs, propose effective approaches for CNN parallelization targeting such platforms, and explore the underlying tradeoffs. Finally, in the last part of this dissertation, we investigate utilization of an existing optimized CNN model to automatically generate a competitive CNN for an IoT application whose objects of interest are a fraction of categories that the original CNN was designed to classify, such that the resource requirement of inference using the synthesized CNN is proportionally scaled down. We use the term resource scalability to refer to this concept and propose solutions for automated synthesis of context-aware, resource-scalable CNNs that meet the functional requirements of the target IoT application at fraction of the resource requirements of the original CNN.

Efficient Processing of Deep Neural Networks

Efficient Processing of Deep Neural Networks PDF Author: Vivienne Sze
Publisher: Springer Nature
ISBN: 3031017668
Category : Technology & Engineering
Languages : en
Pages : 254

Book Description
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

Design of High-performance and Energy-efficient Accelerators for Convolutional Neural Networks

Design of High-performance and Energy-efficient Accelerators for Convolutional Neural Networks PDF Author: Mahmood Azhar Qureshi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Deep neural networks (DNNs) have gained significant traction in artificial intelligence (AI) applications over the past decade owing to a drastic increase in their accuracy. This huge leap in accuracy, however, translates into a sizable model and high computational requirements, something which resource-limited mobile platforms struggle against. Embedding AI inference into various real-world applications requires the design of high-performance, area, and energy-efficient accelerator architectures. In this work, we address the problem of the inference accelerator design for dense and sparse convolutional neural networks (CNNs), a type of DNN which forms the backbone of modern vision-based AI systems. We first introduce a fully dense accelerator architecture referred to as the NeuroMAX accelerator. Most traditional dense CNN accelerators rely on single-core, linear processing elements (PEs), in conjunction with 1D dataflows, for accelerating the convolution operations in a CNN. This limits the maximum achievable ratio of peak throughput per PE count to unity. Most of the past works optimize their dataflows to attain close to 100% hardware utilization to reach this ratio. In the NeuroMAX accelerator, we design a high-throughput, multi-threaded, log-based PE core. The designed core provides a 200% increase in peak throughput per PE count while only incurring a 6% increase in the hardware area overhead compared to a single, linear multiplier PE core with the same output bit precision. NeuroMAX accelerator also uses a 2D weight broadcast dataflow which exploits the multi-threaded nature of the PE cores to achieve a high hardware utilization per layer for various dense CNN models. Sparse convolutional neural network models reduce the massive compute and memory bandwidth requirements inherently present in dense CNNs without a significant loss in accuracy. Designing sparse accelerators for the processing of sparse CNN models, however, is much more challenging compared to the design of dense CNN accelerators. The micro-architecture design, the design of sparse PEs, addressing the load-balancing issues, and the system-level architectural design issues for processing the entire sparse CNN model are some of the key technical challenges that need to be addressed in order to design a high-performance and energy-efficient sparse CNN accelerator architecture. We break this problem down into two parts. In the first part, using some of the concepts from the dense NeuroMAX accelerator, we introduce SparsePE, a multi-threaded, and flexible PE, capable of handling both the dense and sparse CNN model computations. The SparsePE core uses the binary mask representation to actively skip ineffective sparse computations involving zeros, and favors valid, non-zero computations, thereby, drastically increasing the effective throughput and the hardware utilization of the core as compared to a dense PE core. In the second part, we generate a two-dimensional (2D) mesh architecture of the SparsePE cores, which we refer to as the Phantom accelerator. We also propose a novel dataflow that supports processing of all layers of a CNN, including unit and non-unit stride convolutions (CONV), and fully-connected (FC) layers. In addition, the Phantom accelerator uses a two-level load balancing strategy to minimize the computational idling, thereby, further improving the hardware utilization, throughput, as well as the energy efficiency of the accelerator. The performance of the dense and the sparse accelerators is evaluated using a custom-built cycle accurate performance simulator and performance is compared against recent works. Logic utilization on hardware is also compared against the prior works. Finally, we conclude by mentioning some more techniques for accelerating CNNs and presenting some other avenues where the proposed work can be applied.

All Analog CNN Accelerator with RRAMs for Fast Inference

All Analog CNN Accelerator with RRAMs for Fast Inference PDF Author: Minghan Chao
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
As AI applications become more prevalent and powerful, the performance of deep learning neural network is more demanding. The need to enable fast and energy efficient circuits for computing deep neural networks is urgent. Most current research works propose dedicated hardware for data to reuse thousands of times. However, while re-using the same hardware to perform the same computation repeatedly saves area, it comes at the expense of execution time. This presents another critical obstacle, as the need for real-data and rapid AI requires a fundamentally faster approach to implementing neural networks. The focus of this thesis is to duplicate the key operation - multiply and accumulate (MAC) computation units, in the hardware so that there is no hardware re-use, enabling the entire neural network to be physically fabricated on a single chip. As neural networks today often require hundreds of thousands to tens of millions of MAC computation units, this requires designing the smallest MAC computation units to fit all of the operations on chip. Here, we present initial analysis on a convolutional neural network (CNN) accelerator that implements such a system, optimizing for inference speed. The accelerator duplicates all of the computation hardware, thus eliminating the need to fetch data back and forth while reusing the same hardware. We propose a novel design for memory cells using resistive random access memory (RRAM) and computation units utilizing the analog behavior of transistors. This circuit classifies one Cifar-10 dataset image in 6μs (160k frames/s) with 2.4[mu]J energy per classification with an accuracy of 85%. It contains 7.5 million MAC units and achieves 5 million MAC/mm2.

Artificial Neural Networks in Medicine and Biology

Artificial Neural Networks in Medicine and Biology PDF Author: H. Malmgren
Publisher: Springer Science & Business Media
ISBN: 1447105133
Category : Computers
Languages : en
Pages : 339

Book Description
This book contains the proceedings of the conference ANNIMAB-l, held 13-16 May 2000 in Goteborg, Sweden. The conference was organized by the Society for Artificial Neural Networks in Medicine and Biology (ANNIMAB-S), which was established to promote research within a new and genuinely cross-disciplinary field. Forty-two contributions were accepted for presentation; in addition to these, S invited papers are also included. Research within medicine and biology has often been characterised by application of statistical methods for evaluating domain specific data. The growing interest in Artificial Neural Networks has not only introduced new methods for data analysis, but also opened up for development of new models of biological and ecological systems. The ANNIMAB-l conference is focusing on some of the many uses of artificial neural networks with relevance for medicine and biology, specifically: • Medical applications of artificial neural networks: for better diagnoses and outcome predictions from clinical and laboratory data, in the processing of ECG and EEG signals, in medical image analysis, etc. More than half of the contributions address such clinically oriented issues. • Uses of ANNs in biology outside clinical medicine: for example, in models of ecology and evolution, for data analysis in molecular biology, and (of course) in models of animal and human nervous systems and their capabilities. • Theoretical aspects: recent developments in learning algorithms, ANNs in relation to expert systems and to traditional statistical procedures, hybrid systems and integrative approaches.

Efficient Inference on Convolutional Neural Networks by Image Difficulty Prediction

Efficient Inference on Convolutional Neural Networks by Image Difficulty Prediction PDF Author: 張佑任
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Ristretto

Ristretto PDF Author: Philipp Matthias Gysel
Publisher:
ISBN: 9781369201741
Category :
Languages : en
Pages :

Book Description
Convolutional neural networks (CNN) have achieved major breakthroughs in recent years. Their performance in computer vision have matched and in some areas even surpassed human capabilities. Deep neural networks can capture complex non-linear features; however this ability comes at the cost of high computational and memory requirements. State-of-art networks require billions of arithmetic operations and millions of parameters. To enable embedded devices such as smartphones, Google glasses and monitoring cameras with the astonishing power of deep learning, dedicated hardware accelerators can be used to decrease both execution time and power consumption. In applications where fast connection to the cloud is not guaranteed or where privacy is important, computation needs to be done locally. Many hardware accelerators for deep neural networks have been proposed recently. A first important step of accelerator design is hardware-oriented approximation of deep networks, which enables energy-efficient inference.We present Ristretto, a fast and automated framework for CNN approximation. Ristretto simulates the hardware arithmetic of a custom hardware accelerator. The framework reduces the bit-width of network parameters and outputs of resource-intense layers, which reduces the chip area for multiplication units significantly. Alternatively, Ristretto can remove the need for multipliers altogether, resulting in an adder-only arithmetic. The tool fine-tunes trimmed networks to achieve high classification accuracy. Since training of deep neural networks can be time-consuming, Ristretto uses highly optimized routines which run on the GPU. This enables fast compression of any given network. Given a maximum tolerance of 1%, Ristretto can successfully condense CaffeNet and SqueezeNet to 8-bit. The code for Ristretto is available.

TinyML

TinyML PDF Author: Pete Warden
Publisher: O'Reilly Media
ISBN: 1492052019
Category : Computers
Languages : en
Pages : 504

Book Description
Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size