Author: Kenneth Train
Publisher: Cambridge University Press
ISBN: 0521766559
Category : Business & Economics
Languages : en
Pages : 399
Book Description
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Discrete Choice Methods with Simulation
Author: Kenneth Train
Publisher: Cambridge University Press
ISBN: 0521766559
Category : Business & Economics
Languages : en
Pages : 399
Book Description
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Publisher: Cambridge University Press
ISBN: 0521766559
Category : Business & Economics
Languages : en
Pages : 399
Book Description
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Determinants of Travel Choice
Author: David A. Hensher
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 424
Book Description
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 424
Book Description
Efficient Estimation of Discrete-choice Models from Choice-based Samples
Author: Stephen Rhys Cosslett
Publisher:
ISBN:
Category : Choice of transportation
Languages : en
Pages : 498
Book Description
Publisher:
ISBN:
Category : Choice of transportation
Languages : en
Pages : 498
Book Description
Logit Modeling
Author: Alfred DeMaris
Publisher: SAGE
ISBN: 9780803943773
Category : Business & Economics
Languages : en
Pages : 100
Book Description
Logit models : theoretical background. Logit models for multidimensional tables. Logistic regression. Advanced topics in logistic regression. Appendix : Computer routines.
Publisher: SAGE
ISBN: 9780803943773
Category : Business & Economics
Languages : en
Pages : 100
Book Description
Logit models : theoretical background. Logit models for multidimensional tables. Logistic regression. Advanced topics in logistic regression. Appendix : Computer routines.
Advanced Econometrics
Author: Takeshi Amemiya
Publisher: Harvard University Press
ISBN: 9780674005600
Category : Business & Economics
Languages : en
Pages : 540
Book Description
The main features of this text are a thorough treatment of cross-section models—including qualitative response models, censored and truncated regression models, and Markov and duration models—and a rigorous presentation of large sample theory, classical least-squares and generalized least-squares theory, and nonlinear simultaneous equation models.
Publisher: Harvard University Press
ISBN: 9780674005600
Category : Business & Economics
Languages : en
Pages : 540
Book Description
The main features of this text are a thorough treatment of cross-section models—including qualitative response models, censored and truncated regression models, and Markov and duration models—and a rigorous presentation of large sample theory, classical least-squares and generalized least-squares theory, and nonlinear simultaneous equation models.
Handbook on Entropy, Complexity and Spatial Dynamics
Author: Reggiani, Aura
Publisher: Edward Elgar Publishing
ISBN: 1839100591
Category : Social Science
Languages : en
Pages : 640
Book Description
This ground-breaking Handbook presents a state-of-the-art exploration of entropy, complexity and spatial dynamics from fundamental theoretical, empirical and methodological perspectives. It considers how foundational theories can contribute to new advances, including novel modeling and empirical insights at different sectoral, spatial and temporal scales.
Publisher: Edward Elgar Publishing
ISBN: 1839100591
Category : Social Science
Languages : en
Pages : 640
Book Description
This ground-breaking Handbook presents a state-of-the-art exploration of entropy, complexity and spatial dynamics from fundamental theoretical, empirical and methodological perspectives. It considers how foundational theories can contribute to new advances, including novel modeling and empirical insights at different sectoral, spatial and temporal scales.
Modeling Ordered Choices
Author: William H. Greene
Publisher: Cambridge University Press
ISBN: 1139485954
Category : Business & Economics
Languages : en
Pages : 383
Book Description
It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.
Publisher: Cambridge University Press
ISBN: 1139485954
Category : Business & Economics
Languages : en
Pages : 383
Book Description
It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.
Stated Choice Methods
Author: Jordan J. Louviere
Publisher: Cambridge University Press
ISBN: 9780521788304
Category : Business & Economics
Languages : en
Pages : 436
Book Description
A multidisciplinary graduate and practitioner guide, first published in 2000, which offers the theory and application of stated choice methods.
Publisher: Cambridge University Press
ISBN: 9780521788304
Category : Business & Economics
Languages : en
Pages : 436
Book Description
A multidisciplinary graduate and practitioner guide, first published in 2000, which offers the theory and application of stated choice methods.
Another Look at the Nested Logit Model
Author: Carlos Daganzo
Publisher:
ISBN:
Category : Logits
Languages : en
Pages : 70
Book Description
Publisher:
ISBN:
Category : Logits
Languages : en
Pages : 70
Book Description
Regression for Categorical Data
Author: Gerhard Tutz
Publisher: Cambridge University Press
ISBN: 1139499580
Category : Mathematics
Languages : en
Pages : 573
Book Description
This book introduces basic and advanced concepts of categorical regression with a focus on the structuring constituents of regression, including regularization techniques to structure predictors. In addition to standard methods such as the logit and probit model and extensions to multivariate settings, the author presents more recent developments in flexible and high-dimensional regression, which allow weakening of assumptions on the structuring of the predictor and yield fits that are closer to the data. A generalized linear model is used as a unifying framework whenever possible in particular parametric models that are treated within this framework. Many topics not normally included in books on categorical data analysis are treated here, such as nonparametric regression; selection of predictors by regularized estimation procedures; ternative models like the hurdle model and zero-inflated regression models for count data; and non-standard tree-based ensemble methods. The book is accompanied by an R package that contains data sets and code for all the examples.
Publisher: Cambridge University Press
ISBN: 1139499580
Category : Mathematics
Languages : en
Pages : 573
Book Description
This book introduces basic and advanced concepts of categorical regression with a focus on the structuring constituents of regression, including regularization techniques to structure predictors. In addition to standard methods such as the logit and probit model and extensions to multivariate settings, the author presents more recent developments in flexible and high-dimensional regression, which allow weakening of assumptions on the structuring of the predictor and yield fits that are closer to the data. A generalized linear model is used as a unifying framework whenever possible in particular parametric models that are treated within this framework. Many topics not normally included in books on categorical data analysis are treated here, such as nonparametric regression; selection of predictors by regularized estimation procedures; ternative models like the hurdle model and zero-inflated regression models for count data; and non-standard tree-based ensemble methods. The book is accompanied by an R package that contains data sets and code for all the examples.