Author: Agency for Health Care Research and Quality (U.S.)
Publisher: Government Printing Office
ISBN: 1587634236
Category : Medical
Languages : en
Pages : 236
Book Description
This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)
Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide
Author: Agency for Health Care Research and Quality (U.S.)
Publisher: Government Printing Office
ISBN: 1587634236
Category : Medical
Languages : en
Pages : 236
Book Description
This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)
Publisher: Government Printing Office
ISBN: 1587634236
Category : Medical
Languages : en
Pages : 236
Book Description
This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)
Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score
Author: Keisuke Hirano
Publisher:
ISBN:
Category : Estimation theory
Languages : en
Pages : 68
Book Description
We are interested in estimating the average effect of a binary treatment on a scalar outcome. If assignment to the treatment is independent of the potential outcomes given pretreatment variables, biases associated with simple treatment-control average comparisons can be removed by adjusting for differences in the pre-treatment variables. Rosenbaum and Rubin (1983, 1984) show that adjusting solely for differences between treated and control units in a scalar function of the pre-treatment, the propensity score, also removes the entire bias associated with differences in pre-treatment variables. Thus it is possible to obtain unbiased estimates of the treatment effect without conditioning on a possibly high-dimensional vector of pre-treatment variables. Although adjusting for the propensity score removes all the bias, this can come at the expense of efficiency. We show that weighting with the inverse of a nonparametric estimate of the propensity score, rather than the true propensity score, leads to efficient estimates of the various average treatment effects. This result holds whether the pre-treatment variables have discrete or continuous distributions. We provide intuition for this result in a number of ways. First we show that with discrete covariates, exact adjustment for the estimated propensity score is identical to adjustment for the pre-treatment variables. Second, we show that weighting by the inverse of the estimated propensity score can be interpreted as an empirical likelihood estimator that efficiently incorporates the information about the propensity score. Finally, we make a connection to results to other results on efficient estimation through weighting in the context of variable probability sampling.
Publisher:
ISBN:
Category : Estimation theory
Languages : en
Pages : 68
Book Description
We are interested in estimating the average effect of a binary treatment on a scalar outcome. If assignment to the treatment is independent of the potential outcomes given pretreatment variables, biases associated with simple treatment-control average comparisons can be removed by adjusting for differences in the pre-treatment variables. Rosenbaum and Rubin (1983, 1984) show that adjusting solely for differences between treated and control units in a scalar function of the pre-treatment, the propensity score, also removes the entire bias associated with differences in pre-treatment variables. Thus it is possible to obtain unbiased estimates of the treatment effect without conditioning on a possibly high-dimensional vector of pre-treatment variables. Although adjusting for the propensity score removes all the bias, this can come at the expense of efficiency. We show that weighting with the inverse of a nonparametric estimate of the propensity score, rather than the true propensity score, leads to efficient estimates of the various average treatment effects. This result holds whether the pre-treatment variables have discrete or continuous distributions. We provide intuition for this result in a number of ways. First we show that with discrete covariates, exact adjustment for the estimated propensity score is identical to adjustment for the pre-treatment variables. Second, we show that weighting by the inverse of the estimated propensity score can be interpreted as an empirical likelihood estimator that efficiently incorporates the information about the propensity score. Finally, we make a connection to results to other results on efficient estimation through weighting in the context of variable probability sampling.
Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score
Author: Keisuke Hirano
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
We are interested in estimating the average effect of a binary treatment on a scalar outcome. If assignment to the treatment is unconfounded, that is, independent of the potential outcomes given covariates, biases associated with simple treatment-control average comparisons can be removed by adjusting for differences in the covariates. Rosenbaum and Rubin (1983a) show that adjusting solely for differences between treated and control units in a scalar function of the covariates, the propensity score, also removes all biases associated with differences in covariates. Although adjusting for the propensity score removes all the bias, this can come at the expense of efficiency, as shown by Hahn (1998), Heckman, Ichimura, Todd (1998), and Rotnitzky and Robins (1995). We show that weighting by the inverse of a nonparametric estimate of the propensity score, rather than the true propensity score, leads to efficient estimates of the average treatment effect. We provide intuition for this result by showing that this estimator can be interpreted as an empirical likelihood estimator that efficiently incorporates the information about the propensity score.
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
We are interested in estimating the average effect of a binary treatment on a scalar outcome. If assignment to the treatment is unconfounded, that is, independent of the potential outcomes given covariates, biases associated with simple treatment-control average comparisons can be removed by adjusting for differences in the covariates. Rosenbaum and Rubin (1983a) show that adjusting solely for differences between treated and control units in a scalar function of the covariates, the propensity score, also removes all biases associated with differences in covariates. Although adjusting for the propensity score removes all the bias, this can come at the expense of efficiency, as shown by Hahn (1998), Heckman, Ichimura, Todd (1998), and Rotnitzky and Robins (1995). We show that weighting by the inverse of a nonparametric estimate of the propensity score, rather than the true propensity score, leads to efficient estimates of the average treatment effect. We provide intuition for this result by showing that this estimator can be interpreted as an empirical likelihood estimator that efficiently incorporates the information about the propensity score.
Targeted Learning
Author: Mark J. van der Laan
Publisher: Springer Science & Business Media
ISBN: 1441997822
Category : Mathematics
Languages : en
Pages : 628
Book Description
The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the target parameter representing the scientific question of interest. This book is aimed at both statisticians and applied researchers interested in causal inference and general effect estimation for observational and experimental data. Part I is an accessible introduction to super learning and the targeted maximum likelihood estimator, including related concepts necessary to understand and apply these methods. Parts II-IX handle complex data structures and topics applied researchers will immediately recognize from their own research, including time-to-event outcomes, direct and indirect effects, positivity violations, case-control studies, censored data, longitudinal data, and genomic studies.
Publisher: Springer Science & Business Media
ISBN: 1441997822
Category : Mathematics
Languages : en
Pages : 628
Book Description
The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the target parameter representing the scientific question of interest. This book is aimed at both statisticians and applied researchers interested in causal inference and general effect estimation for observational and experimental data. Part I is an accessible introduction to super learning and the targeted maximum likelihood estimator, including related concepts necessary to understand and apply these methods. Parts II-IX handle complex data structures and topics applied researchers will immediately recognize from their own research, including time-to-event outcomes, direct and indirect effects, positivity violations, case-control studies, censored data, longitudinal data, and genomic studies.
Microeconometrics
Author: Steven Durlauf
Publisher: Springer
ISBN: 0230280811
Category : Literary Criticism
Languages : en
Pages : 365
Book Description
Specially selected from The New Palgrave Dictionary of Economics 2nd edition, each article within this compendium covers the fundamental themes within the discipline and is written by a leading practitioner in the field. A handy reference tool.
Publisher: Springer
ISBN: 0230280811
Category : Literary Criticism
Languages : en
Pages : 365
Book Description
Specially selected from The New Palgrave Dictionary of Economics 2nd edition, each article within this compendium covers the fundamental themes within the discipline and is written by a leading practitioner in the field. A handy reference tool.
The Estimation of Causal Effects by Difference-in-difference Methods
Author: Michael Lechner
Publisher: Foundations and Trends(r) in E
ISBN: 9781601984982
Category : Business & Economics
Languages : en
Pages : 72
Book Description
This monograph presents a brief overview of the literature on the difference-in-difference estimation strategy and discusses major issues mainly using a treatment effect perspective that allows more general considerations than the classical regression formulation that still dominates the applied work.
Publisher: Foundations and Trends(r) in E
ISBN: 9781601984982
Category : Business & Economics
Languages : en
Pages : 72
Book Description
This monograph presents a brief overview of the literature on the difference-in-difference estimation strategy and discusses major issues mainly using a treatment effect perspective that allows more general considerations than the classical regression formulation that still dominates the applied work.
Ranked Set Sampling
Author: Munir Ahmad
Publisher: Cambridge Scholars Publishing
ISBN: 1443825220
Category : Social Science
Languages : en
Pages : 240
Book Description
Ranked Set Sampling is one of the new areas of study in this region of the world and is a growing subject of research. Recently, researchers have paid attention to the development of the types of sampling; though it was not welcome in the beginning, it has numerous advantages over the classical sampling techniques. Ranked Set Sampling is doubly random and can be used in any survey designs. The Pakistan Journal of Statistics had attracted statisticians and samplers around the world to write up aspects of Ranked Set Sampling. All of the essays in this book have been reviewed by many critics. This volume can be used as a reference book for postgraduate students in economics, social sciences, medical and biological sciences, and statistics. The subject is still a hot topic for MPhil and PhD students for their dissertations.
Publisher: Cambridge Scholars Publishing
ISBN: 1443825220
Category : Social Science
Languages : en
Pages : 240
Book Description
Ranked Set Sampling is one of the new areas of study in this region of the world and is a growing subject of research. Recently, researchers have paid attention to the development of the types of sampling; though it was not welcome in the beginning, it has numerous advantages over the classical sampling techniques. Ranked Set Sampling is doubly random and can be used in any survey designs. The Pakistan Journal of Statistics had attracted statisticians and samplers around the world to write up aspects of Ranked Set Sampling. All of the essays in this book have been reviewed by many critics. This volume can be used as a reference book for postgraduate students in economics, social sciences, medical and biological sciences, and statistics. The subject is still a hot topic for MPhil and PhD students for their dissertations.
The New Palgrave Dictionary of Economics
Author:
Publisher: Springer
ISBN: 1349588024
Category : Law
Languages : en
Pages : 7493
Book Description
The award-winning The New Palgrave Dictionary of Economics, 2nd edition is now available as a dynamic online resource. Consisting of over 1,900 articles written by leading figures in the field including Nobel prize winners, this is the definitive scholarly reference work for a new generation of economists. Regularly updated! This product is a subscription based product.
Publisher: Springer
ISBN: 1349588024
Category : Law
Languages : en
Pages : 7493
Book Description
The award-winning The New Palgrave Dictionary of Economics, 2nd edition is now available as a dynamic online resource. Consisting of over 1,900 articles written by leading figures in the field including Nobel prize winners, this is the definitive scholarly reference work for a new generation of economists. Regularly updated! This product is a subscription based product.
Targeted Learning in Data Science
Author: Mark J. van der Laan
Publisher: Springer
ISBN: 3319653040
Category : Mathematics
Languages : en
Pages : 655
Book Description
This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic data. It presents a scientific roadmap to translate real-world data science applications into formal statistical estimation problems by using the general template of targeted maximum likelihood estimators. These targeted machine learning algorithms estimate quantities of interest while still providing valid inference. Targeted learning methods within data science area critical component for solving scientific problems in the modern age. The techniques can answer complex questions including optimal rules for assigning treatment based on longitudinal data with time-dependent confounding, as well as other estimands in dependent data structures, such as networks. Included in Targeted Learning in Data Science are demonstrations with soft ware packages and real data sets that present a case that targeted learning is crucial for the next generation of statisticians and data scientists. Th is book is a sequel to the first textbook on machine learning for causal inference, Targeted Learning, published in 2011. Mark van der Laan, PhD, is Jiann-Ping Hsu/Karl E. Peace Professor of Biostatistics and Statistics at UC Berkeley. His research interests include statistical methods in genomics, survival analysis, censored data, machine learning, semiparametric models, causal inference, and targeted learning. Dr. van der Laan received the 2004 Mortimer Spiegelman Award, the 2005 Van Dantzig Award, the 2005 COPSS Snedecor Award, the 2005 COPSS Presidential Award, and has graduated over 40 PhD students in biostatistics and statistics. Sherri Rose, PhD, is Associate Professor of Health Care Policy (Biostatistics) at Harvard Medical School. Her work is centered on developing and integrating innovative statistical approaches to advance human health. Dr. Rose’s methodological research focuses on nonparametric machine learning for causal inference and prediction. She co-leads the Health Policy Data Science Lab and currently serves as an associate editor for the Journal of the American Statistical Association and Biostatistics.
Publisher: Springer
ISBN: 3319653040
Category : Mathematics
Languages : en
Pages : 655
Book Description
This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic data. It presents a scientific roadmap to translate real-world data science applications into formal statistical estimation problems by using the general template of targeted maximum likelihood estimators. These targeted machine learning algorithms estimate quantities of interest while still providing valid inference. Targeted learning methods within data science area critical component for solving scientific problems in the modern age. The techniques can answer complex questions including optimal rules for assigning treatment based on longitudinal data with time-dependent confounding, as well as other estimands in dependent data structures, such as networks. Included in Targeted Learning in Data Science are demonstrations with soft ware packages and real data sets that present a case that targeted learning is crucial for the next generation of statisticians and data scientists. Th is book is a sequel to the first textbook on machine learning for causal inference, Targeted Learning, published in 2011. Mark van der Laan, PhD, is Jiann-Ping Hsu/Karl E. Peace Professor of Biostatistics and Statistics at UC Berkeley. His research interests include statistical methods in genomics, survival analysis, censored data, machine learning, semiparametric models, causal inference, and targeted learning. Dr. van der Laan received the 2004 Mortimer Spiegelman Award, the 2005 Van Dantzig Award, the 2005 COPSS Snedecor Award, the 2005 COPSS Presidential Award, and has graduated over 40 PhD students in biostatistics and statistics. Sherri Rose, PhD, is Associate Professor of Health Care Policy (Biostatistics) at Harvard Medical School. Her work is centered on developing and integrating innovative statistical approaches to advance human health. Dr. Rose’s methodological research focuses on nonparametric machine learning for causal inference and prediction. She co-leads the Health Policy Data Science Lab and currently serves as an associate editor for the Journal of the American Statistical Association and Biostatistics.
Identification and Inference for Econometric Models
Author: Donald W. K. Andrews
Publisher: Cambridge University Press
ISBN: 9780521844413
Category : Business & Economics
Languages : en
Pages : 606
Book Description
This 2005 collection pushed forward the research frontier in four areas of theoretical econometrics.
Publisher: Cambridge University Press
ISBN: 9780521844413
Category : Business & Economics
Languages : en
Pages : 606
Book Description
This 2005 collection pushed forward the research frontier in four areas of theoretical econometrics.