Author: Michael C Fu
Publisher: Springer
ISBN: 1493913840
Category : Business & Economics
Languages : en
Pages : 400
Book Description
The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes. This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science, operations management and stochastic control, as well as in economics/finance and computer science.
Handbook of Simulation Optimization
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 956
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 956
Book Description
Ordinal Optimization
Author: Yu-Chi Ho
Publisher: Springer Science & Business Media
ISBN: 0387686924
Category : Technology & Engineering
Languages : en
Pages : 325
Book Description
Performance evaluation of increasingly complex human-made systems requires the use of simulation models. However, these systems are difficult to describe and capture by succinct mathematical models. The purpose of this book is to address the difficulties of the optimization of complex systems via simulation models or other computation-intensive models involving possible stochastic effects and discrete choices. This book establishes distinct advantages of the "softer" ordinal approach for search-based type problems, analyzes its general properties, and shows the many orders of magnitude improvement in computational efficiency that is possible.
Publisher: Springer Science & Business Media
ISBN: 0387686924
Category : Technology & Engineering
Languages : en
Pages : 325
Book Description
Performance evaluation of increasingly complex human-made systems requires the use of simulation models. However, these systems are difficult to describe and capture by succinct mathematical models. The purpose of this book is to address the difficulties of the optimization of complex systems via simulation models or other computation-intensive models involving possible stochastic effects and discrete choices. This book establishes distinct advantages of the "softer" ordinal approach for search-based type problems, analyzes its general properties, and shows the many orders of magnitude improvement in computational efficiency that is possible.
Multi-Objective Memetic Algorithms
Author: Chi-Keong Goh
Publisher: Springer Science & Business Media
ISBN: 354088050X
Category : Mathematics
Languages : en
Pages : 399
Book Description
The application of sophisticated evolutionary computing approaches for solving complex problems with multiple conflicting objectives in science and engineering have increased steadily in the recent years. Within this growing trend, Memetic algorithms are, perhaps, one of the most successful stories, having demonstrated better efficacy in dealing with multi-objective problems as compared to its conventional counterparts. Nonetheless, researchers are only beginning to realize the vast potential of multi-objective Memetic algorithm and there remain many open topics in its design. This book presents a very first comprehensive collection of works, written by leading researchers in the field, and reflects the current state-of-the-art in the theory and practice of multi-objective Memetic algorithms. "Multi-Objective Memetic algorithms" is organized for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of Memetic algorithms and multi-objective optimization.
Publisher: Springer Science & Business Media
ISBN: 354088050X
Category : Mathematics
Languages : en
Pages : 399
Book Description
The application of sophisticated evolutionary computing approaches for solving complex problems with multiple conflicting objectives in science and engineering have increased steadily in the recent years. Within this growing trend, Memetic algorithms are, perhaps, one of the most successful stories, having demonstrated better efficacy in dealing with multi-objective problems as compared to its conventional counterparts. Nonetheless, researchers are only beginning to realize the vast potential of multi-objective Memetic algorithm and there remain many open topics in its design. This book presents a very first comprehensive collection of works, written by leading researchers in the field, and reflects the current state-of-the-art in the theory and practice of multi-objective Memetic algorithms. "Multi-Objective Memetic algorithms" is organized for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of Memetic algorithms and multi-objective optimization.
Modeling and Simulation Based Life-Cycle Engineering
Author: Ken Chong
Publisher: CRC Press
ISBN: 1482264714
Category : Architecture
Languages : en
Pages : 359
Book Description
Advances in computational power have facilitated the development of simulations unprecedented in their computational size, scope of technical issues, spatial and temporal resolution, complexity and comprehensiveness. As a result, complex structures from airplanes to bridges can be almost completely based on model-based simulations. This book gives
Publisher: CRC Press
ISBN: 1482264714
Category : Architecture
Languages : en
Pages : 359
Book Description
Advances in computational power have facilitated the development of simulations unprecedented in their computational size, scope of technical issues, spatial and temporal resolution, complexity and comprehensiveness. As a result, complex structures from airplanes to bridges can be almost completely based on model-based simulations. This book gives
Approximate Dynamic Programming
Author: Warren B. Powell
Publisher: John Wiley & Sons
ISBN: 111802916X
Category : Mathematics
Languages : en
Pages : 573
Book Description
Praise for the First Edition "Finally, a book devoted to dynamic programming and written using the language of operations research (OR)! This beautiful book fills a gap in the libraries of OR specialists and practitioners." —Computing Reviews This new edition showcases a focus on modeling and computation for complex classes of approximate dynamic programming problems Understanding approximate dynamic programming (ADP) is vital in order to develop practical and high-quality solutions to complex industrial problems, particularly when those problems involve making decisions in the presence of uncertainty. Approximate Dynamic Programming, Second Edition uniquely integrates four distinct disciplines—Markov decision processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully approach, model, and solve a wide range of real-life problems using ADP. The book continues to bridge the gap between computer science, simulation, and operations research and now adopts the notation and vocabulary of reinforcement learning as well as stochastic search and simulation optimization. The author outlines the essential algorithms that serve as a starting point in the design of practical solutions for real problems. The three curses of dimensionality that impact complex problems are introduced and detailed coverage of implementation challenges is provided. The Second Edition also features: A new chapter describing four fundamental classes of policies for working with diverse stochastic optimization problems: myopic policies, look-ahead policies, policy function approximations, and policies based on value function approximations A new chapter on policy search that brings together stochastic search and simulation optimization concepts and introduces a new class of optimal learning strategies Updated coverage of the exploration exploitation problem in ADP, now including a recently developed method for doing active learning in the presence of a physical state, using the concept of the knowledge gradient A new sequence of chapters describing statistical methods for approximating value functions, estimating the value of a fixed policy, and value function approximation while searching for optimal policies The presented coverage of ADP emphasizes models and algorithms, focusing on related applications and computation while also discussing the theoretical side of the topic that explores proofs of convergence and rate of convergence. A related website features an ongoing discussion of the evolving fields of approximation dynamic programming and reinforcement learning, along with additional readings, software, and datasets. Requiring only a basic understanding of statistics and probability, Approximate Dynamic Programming, Second Edition is an excellent book for industrial engineering and operations research courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals who utilize dynamic programming, stochastic programming, and control theory to solve problems in their everyday work.
Publisher: John Wiley & Sons
ISBN: 111802916X
Category : Mathematics
Languages : en
Pages : 573
Book Description
Praise for the First Edition "Finally, a book devoted to dynamic programming and written using the language of operations research (OR)! This beautiful book fills a gap in the libraries of OR specialists and practitioners." —Computing Reviews This new edition showcases a focus on modeling and computation for complex classes of approximate dynamic programming problems Understanding approximate dynamic programming (ADP) is vital in order to develop practical and high-quality solutions to complex industrial problems, particularly when those problems involve making decisions in the presence of uncertainty. Approximate Dynamic Programming, Second Edition uniquely integrates four distinct disciplines—Markov decision processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully approach, model, and solve a wide range of real-life problems using ADP. The book continues to bridge the gap between computer science, simulation, and operations research and now adopts the notation and vocabulary of reinforcement learning as well as stochastic search and simulation optimization. The author outlines the essential algorithms that serve as a starting point in the design of practical solutions for real problems. The three curses of dimensionality that impact complex problems are introduced and detailed coverage of implementation challenges is provided. The Second Edition also features: A new chapter describing four fundamental classes of policies for working with diverse stochastic optimization problems: myopic policies, look-ahead policies, policy function approximations, and policies based on value function approximations A new chapter on policy search that brings together stochastic search and simulation optimization concepts and introduces a new class of optimal learning strategies Updated coverage of the exploration exploitation problem in ADP, now including a recently developed method for doing active learning in the presence of a physical state, using the concept of the knowledge gradient A new sequence of chapters describing statistical methods for approximating value functions, estimating the value of a fixed policy, and value function approximation while searching for optimal policies The presented coverage of ADP emphasizes models and algorithms, focusing on related applications and computation while also discussing the theoretical side of the topic that explores proofs of convergence and rate of convergence. A related website features an ongoing discussion of the evolving fields of approximation dynamic programming and reinforcement learning, along with additional readings, software, and datasets. Requiring only a basic understanding of statistics and probability, Approximate Dynamic Programming, Second Edition is an excellent book for industrial engineering and operations research courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals who utilize dynamic programming, stochastic programming, and control theory to solve problems in their everyday work.
Stochastic Simulation Optimization for Discrete Event Systems
Author: Chun-Hung Chen
Publisher: World Scientific
ISBN: 9814513016
Category : Mathematics
Languages : en
Pages : 274
Book Description
Discrete event systems (DES) have become pervasive in our daily lives. Examples include (but are not restricted to) manufacturing and supply chains, transportation, healthcare, call centers, and financial engineering. However, due to their complexities that often involve millions or even billions of events with many variables and constraints, modeling these stochastic simulations has long been a hard nut to crack. The advance in available computer technology, especially of cluster and cloud computing, has paved the way for the realization of a number of stochastic simulation optimization for complex discrete event systems. This book will introduce two important techniques initially proposed and developed by Professor Y C Ho and his team; namely perturbation analysis and ordinal optimization for stochastic simulation optimization, and present the state-of-the-art technology, and their future research directions.
Publisher: World Scientific
ISBN: 9814513016
Category : Mathematics
Languages : en
Pages : 274
Book Description
Discrete event systems (DES) have become pervasive in our daily lives. Examples include (but are not restricted to) manufacturing and supply chains, transportation, healthcare, call centers, and financial engineering. However, due to their complexities that often involve millions or even billions of events with many variables and constraints, modeling these stochastic simulations has long been a hard nut to crack. The advance in available computer technology, especially of cluster and cloud computing, has paved the way for the realization of a number of stochastic simulation optimization for complex discrete event systems. This book will introduce two important techniques initially proposed and developed by Professor Y C Ho and his team; namely perturbation analysis and ordinal optimization for stochastic simulation optimization, and present the state-of-the-art technology, and their future research directions.
Enabling Technology for Simulation Science
Perturbation Analysis of Discrete Event Dynamic Systems
Author: Yu-Chi (Larry) Ho
Publisher: Springer Science & Business Media
ISBN: 1461540240
Category : Technology & Engineering
Languages : en
Pages : 449
Book Description
Dynamic Systems (DEDS) are almost endless: military C31 Ilogistic systems, the emergency ward of a metropolitan hospital, back offices of large insurance and brokerage fums, service and spare part operations of multinational fums . . . . the point is the pervasive nature of such systems in the daily life of human beings. Yet DEDS is a relatively new phenomenon in dynamic systems studies. From the days of Galileo to Newton to quantum mechanics and cosmology of the present, dynamic systems in nature are primarily differential equations based and time driven. A large literature and endless success stories have been built up on such Continuous Variable Dynamic Systems (CVDS). It is, however, equally clear that DEDS are fundamentally different from CVDS. They are event driven, asynchronous, mostly man-made and only became significant during the past generation. Increasingly, however, it can be argued that in the modem world our lives are being impacted by and dependent upon the efficient operations of such DEDS. Yet compared to the successful paradigm of differential equations for CVDS the mathematical modelling of DEDS is in its infancy. Nor are there as many successful and established techniques for their analysis and synthesis. The purpose of this series is to promote the study and understanding of the modelling, analysis, control, and management of DEDS. The idea of the series came from editing a special issue of the Proceedings of IEEE on DEOS during 1988.
Publisher: Springer Science & Business Media
ISBN: 1461540240
Category : Technology & Engineering
Languages : en
Pages : 449
Book Description
Dynamic Systems (DEDS) are almost endless: military C31 Ilogistic systems, the emergency ward of a metropolitan hospital, back offices of large insurance and brokerage fums, service and spare part operations of multinational fums . . . . the point is the pervasive nature of such systems in the daily life of human beings. Yet DEDS is a relatively new phenomenon in dynamic systems studies. From the days of Galileo to Newton to quantum mechanics and cosmology of the present, dynamic systems in nature are primarily differential equations based and time driven. A large literature and endless success stories have been built up on such Continuous Variable Dynamic Systems (CVDS). It is, however, equally clear that DEDS are fundamentally different from CVDS. They are event driven, asynchronous, mostly man-made and only became significant during the past generation. Increasingly, however, it can be argued that in the modem world our lives are being impacted by and dependent upon the efficient operations of such DEDS. Yet compared to the successful paradigm of differential equations for CVDS the mathematical modelling of DEDS is in its infancy. Nor are there as many successful and established techniques for their analysis and synthesis. The purpose of this series is to promote the study and understanding of the modelling, analysis, control, and management of DEDS. The idea of the series came from editing a special issue of the Proceedings of IEEE on DEOS during 1988.
Biologically-Inspired Optimisation Methods
Author: Andrew Lewis
Publisher: Springer Science & Business Media
ISBN: 3642012612
Category : Mathematics
Languages : en
Pages : 365
Book Description
This book covers the latest theories, applications and techniques in Biologically-Inspired Optimisation Methods. Many chapters derive from studies presented at workshops and international conferences on e-Science, Grid Computing and Evolutionary computation.
Publisher: Springer Science & Business Media
ISBN: 3642012612
Category : Mathematics
Languages : en
Pages : 365
Book Description
This book covers the latest theories, applications and techniques in Biologically-Inspired Optimisation Methods. Many chapters derive from studies presented at workshops and international conferences on e-Science, Grid Computing and Evolutionary computation.