Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721978694
Category :
Languages : en
Pages : 322
Book Description
Experimental measurements are presented in this report to document the sensitivity of film cooling performance to the hole length and coolant delivery plenum geometry. Measurements with hot-wire anemometry detail velocity, local turbulence, and spectral distributions over the exit plane of film cooling holes and downstream of injection in the coolant-freestream interaction zone. Measurements of discharge coefficients and adiabatic effectiveness are also provided. Coolant is supplied to the film cooling holes by means of a large, open plenum and through plenums which force the coolant to approach the holes either co-current or counter-current to the freestream. A single row of film cooling holes with 35 degree-inclined streamwise at two coolant-to-freestream velocity ratios, 0.5 and 1.0, is investigated. The coolant-to-freestream density ratio is maintained in the range 0.96 to 1.0. Measurements were taken under high-freestream (FSTI = 12%) and low-freestream turbulence intensity (FSTI = 0.5%) conditions. The results document the effects of the hole L/D, coolant supply plenum geometry, velocity ratio, and FSTI. In general, hole L/D and the supply plenum geometry play influential roles in the film cooling performance. Hole L/D effects, however, are more pronounced. Film cooling performance is also dependent upon the velocity ratio and FSTI. Burd, Steven W. and Simon, Terrence W. and Thurman, Douglas (Technical Monitor) Glenn Research Center NAG3-1638; RTOP 714-01-4A...
Effects of Hole Length, Supply Plenum Geometry, and Freestream Turbulence on Film Cooling Performance
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721978694
Category :
Languages : en
Pages : 322
Book Description
Experimental measurements are presented in this report to document the sensitivity of film cooling performance to the hole length and coolant delivery plenum geometry. Measurements with hot-wire anemometry detail velocity, local turbulence, and spectral distributions over the exit plane of film cooling holes and downstream of injection in the coolant-freestream interaction zone. Measurements of discharge coefficients and adiabatic effectiveness are also provided. Coolant is supplied to the film cooling holes by means of a large, open plenum and through plenums which force the coolant to approach the holes either co-current or counter-current to the freestream. A single row of film cooling holes with 35 degree-inclined streamwise at two coolant-to-freestream velocity ratios, 0.5 and 1.0, is investigated. The coolant-to-freestream density ratio is maintained in the range 0.96 to 1.0. Measurements were taken under high-freestream (FSTI = 12%) and low-freestream turbulence intensity (FSTI = 0.5%) conditions. The results document the effects of the hole L/D, coolant supply plenum geometry, velocity ratio, and FSTI. In general, hole L/D and the supply plenum geometry play influential roles in the film cooling performance. Hole L/D effects, however, are more pronounced. Film cooling performance is also dependent upon the velocity ratio and FSTI. Burd, Steven W. and Simon, Terrence W. and Thurman, Douglas (Technical Monitor) Glenn Research Center NAG3-1638; RTOP 714-01-4A...
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721978694
Category :
Languages : en
Pages : 322
Book Description
Experimental measurements are presented in this report to document the sensitivity of film cooling performance to the hole length and coolant delivery plenum geometry. Measurements with hot-wire anemometry detail velocity, local turbulence, and spectral distributions over the exit plane of film cooling holes and downstream of injection in the coolant-freestream interaction zone. Measurements of discharge coefficients and adiabatic effectiveness are also provided. Coolant is supplied to the film cooling holes by means of a large, open plenum and through plenums which force the coolant to approach the holes either co-current or counter-current to the freestream. A single row of film cooling holes with 35 degree-inclined streamwise at two coolant-to-freestream velocity ratios, 0.5 and 1.0, is investigated. The coolant-to-freestream density ratio is maintained in the range 0.96 to 1.0. Measurements were taken under high-freestream (FSTI = 12%) and low-freestream turbulence intensity (FSTI = 0.5%) conditions. The results document the effects of the hole L/D, coolant supply plenum geometry, velocity ratio, and FSTI. In general, hole L/D and the supply plenum geometry play influential roles in the film cooling performance. Hole L/D effects, however, are more pronounced. Film cooling performance is also dependent upon the velocity ratio and FSTI. Burd, Steven W. and Simon, Terrence W. and Thurman, Douglas (Technical Monitor) Glenn Research Center NAG3-1638; RTOP 714-01-4A...
Effects of Hole Length, Supply Plenum Geometry, and Freestream Turbulence on Film Cooling Performance
Paper
Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 478
Book Description
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 478
Book Description
1996 Coolant Flow Management Workshop
Proceedings of the ... ASME Design Engineering Technical Conferences
Author:
Publisher:
ISBN:
Category : Computer-aided design
Languages : en
Pages : 894
Book Description
Publisher:
ISBN:
Category : Computer-aided design
Languages : en
Pages : 894
Book Description
Proceedings of the ASME Turbo Expo 2002
Author:
Publisher:
ISBN:
Category : Aircraft gas-turbines
Languages : en
Pages : 590
Book Description
Annotation Volumes 3A and 3B are part of a five-volume set comprising the proceedings of the June 2002 conference held in the Netherlands. Approximately 125 articles address heat transfer, and manufacturing materials and metallurgy. A sampling of topics: the effect of freestream turbulence on film cooling adiabatic effectiveness; the influence of periodic unsteady inflow conditions on leading edge film cooling; and fluid dynamcis of a pre-swirl rotor-stator system. No subject index. Annotation c. Book News, Inc., Portland, OR (booknews.com).
Publisher:
ISBN:
Category : Aircraft gas-turbines
Languages : en
Pages : 590
Book Description
Annotation Volumes 3A and 3B are part of a five-volume set comprising the proceedings of the June 2002 conference held in the Netherlands. Approximately 125 articles address heat transfer, and manufacturing materials and metallurgy. A sampling of topics: the effect of freestream turbulence on film cooling adiabatic effectiveness; the influence of periodic unsteady inflow conditions on leading edge film cooling; and fluid dynamcis of a pre-swirl rotor-stator system. No subject index. Annotation c. Book News, Inc., Portland, OR (booknews.com).
Recent Developments in Numerical Methods for Turbomachinery Flows
Author: Tony Arts
Publisher:
ISBN:
Category : Numerical analysis
Languages : en
Pages : 556
Book Description
Publisher:
ISBN:
Category : Numerical analysis
Languages : en
Pages : 556
Book Description
Gas Turbine Heat Transfer and Cooling Technology, Second Edition
Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Lecture series
Author:
Publisher:
ISBN:
Category : Fluid dynamic measurements
Languages : en
Pages : 554
Book Description
Publisher:
ISBN:
Category : Fluid dynamic measurements
Languages : en
Pages : 554
Book Description
ASME Technical Papers
Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 470
Book Description
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 470
Book Description