Dynamics of Biologically Informed Neural Mass Models of the Brain PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Dynamics of Biologically Informed Neural Mass Models of the Brain PDF full book. Access full book title Dynamics of Biologically Informed Neural Mass Models of the Brain by Andreas Spiegler. Download full books in PDF and EPUB format.

Dynamics of Biologically Informed Neural Mass Models of the Brain

Dynamics of Biologically Informed Neural Mass Models of the Brain PDF Author: Andreas Spiegler
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Dynamics of Biologically Informed Neural Mass Models of the Brain

Dynamics of Biologically Informed Neural Mass Models of the Brain PDF Author: Andreas Spiegler
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Neural Masses and Fields: Modelling the Dynamics of Brain Activity

Neural Masses and Fields: Modelling the Dynamics of Brain Activity PDF Author: Karl Friston
Publisher: Frontiers Media SA
ISBN: 2889194272
Category : Differential equations
Languages : en
Pages : 238

Book Description
Biophysical modelling of brain activity has a long and illustrious history and has recently profited from technological advances that furnish neuroimaging data at an unprecedented spatiotemporal resolution. Neuronal modelling is a very active area of research, with applications ranging from the characterization of neurobiological and cognitive processes, to constructing artificial brains in silico and building brain-machine interface and neuroprosthetic devices. Biophysical modelling has always benefited from interdisciplinary interactions between different and seemingly distant fields; ranging from mathematics and engineering to linguistics and psychology. This Research Topic aims to promote such interactions by promoting papers that contribute to a deeper understanding of neural activity as measured by fMRI or electrophysiology. In general, mean field models of neural activity can be divided into two classes: neural mass and neural field models. The main difference between these classes is that field models prescribe how a quantity characterizing neural activity (such as average depolarization of a neural population) evolves over both space and time as opposed to mass models, which characterize activity over time only; by assuming that all neurons in a population are located at (approximately) the same point. This Research Topic focuses on both classes of models and considers several aspects and their relative merits that: span from synapses to the whole brain; comparisons of their predictions with EEG and MEG spectra of spontaneous brain activity; evoked responses, seizures, and fitting data - to infer brain states and map physiological parameters.

Brain Dynamics

Brain Dynamics PDF Author: Hermann Haken
Publisher: Springer Science & Business Media
ISBN: 3540752382
Category : Science
Languages : en
Pages : 331

Book Description
This is an excellent introduction for graduate students and nonspecialists to the field of mathematical and computational neurosciences. The book approaches the subject via pulsed-coupled neural networks, which have at their core the lighthouse and integrate-and-fire models. These allow for highly flexible modeling of realistic synaptic activity, synchronization and spatio-temporal pattern formation. The more advanced pulse-averaged equations are discussed.

Neural Fields

Neural Fields PDF Author: Stephen Coombes
Publisher: Springer
ISBN: 3642545939
Category : Mathematics
Languages : en
Pages : 488

Book Description
Neural field theory has a long-standing tradition in the mathematical and computational neurosciences. Beginning almost 50 years ago with seminal work by Griffiths and culminating in the 1970ties with the models of Wilson and Cowan, Nunez and Amari, this important research area experienced a renaissance during the 1990ties by the groups of Ermentrout, Robinson, Bressloff, Wright and Haken. Since then, much progress has been made in both, the development of mathematical and numerical techniques and in physiological refinement und understanding. In contrast to large-scale neural network models described by huge connectivity matrices that are computationally expensive in numerical simulations, neural field models described by connectivity kernels allow for analytical treatment by means of methods from functional analysis. Thus, a number of rigorous results on the existence of bump and wave solutions or on inverse kernel construction problems are nowadays available. Moreover, neural fields provide an important interface for the coupling of neural activity to experimentally observable data, such as the electroencephalogram (EEG) or functional magnetic resonance imaging (fMRI). And finally, neural fields over rather abstract feature spaces, also called dynamic fields, found successful applications in the cognitive sciences and in robotics. Up to now, research results in neural field theory have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. There is no comprehensive collection of results or reviews available yet. With our proposed book Neural Field Theory, we aim at filling this gap in the market. We received consent from some of the leading scientists in the field, who are willing to write contributions for the book, among them are two of the founding-fathers of neural field theory: Shun-ichi Amari and Jack Cowan.

Rethinking Neural Networks

Rethinking Neural Networks PDF Author: Karl H. Pribram
Publisher: Psychology Press
ISBN: 1317780949
Category : Psychology
Languages : en
Pages : 566

Book Description
The result of the first Appalachian Conference on neurodynamics, this volume focuses on processing in biological neural networks. How do brain processes become organized during decision making? That is, what are the neural antecedents that determine which course of action is to be pursued? Half of the contributions deal with modelling synapto-dendritic and neural ultrastructural processes; the remainder, with laboratory research findings, often cast in terms of the models. The interchanges at the conference and the ensuing publication also provide a foundation for further meetings. These will address how processes in different brain systems, coactive with the neural residues of experience and with sensory input, determine decisions.

Neural and Brain Modeling

Neural and Brain Modeling PDF Author: Ronald MacGregor
Publisher: Elsevier
ISBN: 0323143849
Category : Science
Languages : en
Pages : 656

Book Description
Neural and Brain Modeling reviews models used to study neural interactions. The book also discusses 54 computer programs that simulate the dynamics of neurons and neuronal networks to illustrate between unit and systemic levels of nervous system functions. The models of neural and brain operations are composed of three sections: models of generic mechanisms; models of specific neuronal systems; and models of generic operations, networks, and systems. The text discusses the computational problems related to galvanizing a neuronal population though an activity in the multifiber input system. The investigator can use a computer technique to simulate multiple interacting neuronal populations. For example, he can investigate the case of a single local region that contains two populations of neurons: namely, a parent population of excitatory cells, and a second set of inhibitory neurons. Computer simulation models predict the various dynamic activity occurring in the complicated structure and physiology of neuronal systems. Computer models can be used in "top-down" brain/mind research where the systemic, global, and emergent properties of nervous systems are generated. The book is recommended for behavioral scientists, psychiatrists, psychologists, computer programmers, students, and professors in human behavior.

Integrative Neuroscience

Integrative Neuroscience PDF Author: Evian Gordon
Publisher: CRC Press
ISBN: 9789058230546
Category : Science
Languages : en
Pages : 282

Book Description
Most brain related activity has focussed on specialized interests within individual disciplines. Recent multidisciplinary activity has provided the impetus to break down these boundaries and encourage a freer exchange of information across disciplines. This text reflects these developments. It spans the landscape of brain science to provide core information from 12 disciplines (including evolution, philosophy, anatomy, chemistry, computer science, brain dynamics, psychology, neurology, psychiatry, psychotherapy and brain imaging). In outlining how and why it is now possible to realistically model aspects of the brain's dynamics from such a wide range of intellectual endeavors, this book will prove itself useful to undergraduates, postgraduates and all those seeking a contemporary perspective and evaluation of the current status and future directions in the brain sciences.

Dynamical Systems in Neuroscience

Dynamical Systems in Neuroscience PDF Author: Eugene M. Izhikevich
Publisher: MIT Press
ISBN: 0262090430
Category : Differentiable dynamical systems
Languages : en
Pages : 522

Book Description
In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.

Neuronal Dynamics

Neuronal Dynamics PDF Author: Wulfram Gerstner
Publisher: Cambridge University Press
ISBN: 1107060834
Category : Computers
Languages : en
Pages : 591

Book Description
This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

EEG/MEG Source Reconstruction

EEG/MEG Source Reconstruction PDF Author: Thomas R. Knösche
Publisher: Springer Nature
ISBN: 3030749185
Category : Medical
Languages : en
Pages : 429

Book Description
This textbook provides a comprehensive and didactic introduction from the basics to the current state of the art in the field of EEG/MEG source reconstruction. Reconstructing the generators or sources of electroencephalographic and magnetoencephalographic (EEG/MEG) signals is an important problem in basic neuroscience as well as clinical research and practice. Over the past few decades, an entire theory, together with a whole collection of algorithms and techniques, has developed. In this textbook, the authors provide a unified perspective on a broad range of EEG/MEG source reconstruction methods, with particular emphasis on their respective assumptions about sources, data, head tissues, and sensor properties. An introductory chapter highlights the concept of brain imaging and the particular importance of the neuroelectromagnetic inverse problem. This is followed by an in-depth discussion of neural information processing and brain signal generation and an introduction to the practice of data acquisition. Next, the relevant mathematical models for the sources of EEG and MEG are discussed in detail, followed by the neuroelectromagnetic forward problem, that is, the prediction of EEG or MEG signals from those source models, using biophysical descriptions of the head tissues and the sensors. The main part of this textbook is dedicated to the source reconstruction methods. The authors present a theoretical framework of the neuroelectromagnetic inverse problem, centered on Bayes’ theorem, which then serves as the basis for a detailed description of a large variety of techniques, including dipole fit methods, distributed source reconstruction, spatial filters, and dynamic source reconstruction methods. The final two chapters address the important topic of assessment, including verification and validation of source reconstruction methods, and their actual application to real-world scientific and clinical questions. This book is intended as basic reading for anybody who is engaged with EEG/MEG source reconstruction, be it as a method developer or as a user, including advanced undergraduate students, PhD students, and postdocs in neuroscience, biomedical engineering, and related fields.