Author: Alphose Zingoni
Publisher: CRC Press
ISBN: 1482264072
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Appeals to the Student and the Seasoned Professional While the analysis of a civil-engineering structure typically seeks to quantify static effects (stresses and strains), there are some aspects that require considerations of vibration and dynamic behavior. Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations is relevant to instances that involve significant time-varying effects, including impact and sudden movement. It explains the basic theory to undergraduate and graduate students taking courses on vibration and dynamics, and also presents an original approach for the vibration analysis of symmetric systems, for both researchers and practicing engineers. Divided into two parts, it first covers the fundamentals of the vibration of engineering systems, and later addresses how symmetry affects vibration behavior. Part I treats the modeling of discrete single and multi-degree-of-freedom systems, as well as mathematical formulations for continuous systems, both analytical and numerical. It also features some worked examples and tutorial problems. Part II introduces the mathematical concepts of group theory and symmetry groups, and applies these to the vibration of a diverse range of problems in structural mechanics. It reveals the computational benefits of the group-theoretic approach, and sheds new insights on complex vibration phenomena. The book consists of 11 chapters with topics that include: The vibration of discrete systems or lumped parameter models The free and forced response of single degree-of-freedom systems The vibration of systems with multiple degrees of freedom The vibration of continuous systems (strings, rods and beams) The essentials of finite-element vibration modelling Symmetry considerations and an outline of group and representation theories Applications of group theory to the vibration of linear mechanical systems Applications of group theory to the vibration of structural grids and cable nets Group-theoretic finite-element and finite-difference formulations Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations acquaints students with the fundamentals of vibration theory, informs experienced structural practitioners on simple and effective techniques for vibration modelling, and provides researchers with new directions for the development of computational vibration procedures.
Vibration Analysis and Structural Dynamics for Civil Engineers
Author: Alphose Zingoni
Publisher: CRC Press
ISBN: 1482264072
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Appeals to the Student and the Seasoned Professional While the analysis of a civil-engineering structure typically seeks to quantify static effects (stresses and strains), there are some aspects that require considerations of vibration and dynamic behavior. Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations is relevant to instances that involve significant time-varying effects, including impact and sudden movement. It explains the basic theory to undergraduate and graduate students taking courses on vibration and dynamics, and also presents an original approach for the vibration analysis of symmetric systems, for both researchers and practicing engineers. Divided into two parts, it first covers the fundamentals of the vibration of engineering systems, and later addresses how symmetry affects vibration behavior. Part I treats the modeling of discrete single and multi-degree-of-freedom systems, as well as mathematical formulations for continuous systems, both analytical and numerical. It also features some worked examples and tutorial problems. Part II introduces the mathematical concepts of group theory and symmetry groups, and applies these to the vibration of a diverse range of problems in structural mechanics. It reveals the computational benefits of the group-theoretic approach, and sheds new insights on complex vibration phenomena. The book consists of 11 chapters with topics that include: The vibration of discrete systems or lumped parameter models The free and forced response of single degree-of-freedom systems The vibration of systems with multiple degrees of freedom The vibration of continuous systems (strings, rods and beams) The essentials of finite-element vibration modelling Symmetry considerations and an outline of group and representation theories Applications of group theory to the vibration of linear mechanical systems Applications of group theory to the vibration of structural grids and cable nets Group-theoretic finite-element and finite-difference formulations Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations acquaints students with the fundamentals of vibration theory, informs experienced structural practitioners on simple and effective techniques for vibration modelling, and provides researchers with new directions for the development of computational vibration procedures.
Publisher: CRC Press
ISBN: 1482264072
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Appeals to the Student and the Seasoned Professional While the analysis of a civil-engineering structure typically seeks to quantify static effects (stresses and strains), there are some aspects that require considerations of vibration and dynamic behavior. Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations is relevant to instances that involve significant time-varying effects, including impact and sudden movement. It explains the basic theory to undergraduate and graduate students taking courses on vibration and dynamics, and also presents an original approach for the vibration analysis of symmetric systems, for both researchers and practicing engineers. Divided into two parts, it first covers the fundamentals of the vibration of engineering systems, and later addresses how symmetry affects vibration behavior. Part I treats the modeling of discrete single and multi-degree-of-freedom systems, as well as mathematical formulations for continuous systems, both analytical and numerical. It also features some worked examples and tutorial problems. Part II introduces the mathematical concepts of group theory and symmetry groups, and applies these to the vibration of a diverse range of problems in structural mechanics. It reveals the computational benefits of the group-theoretic approach, and sheds new insights on complex vibration phenomena. The book consists of 11 chapters with topics that include: The vibration of discrete systems or lumped parameter models The free and forced response of single degree-of-freedom systems The vibration of systems with multiple degrees of freedom The vibration of continuous systems (strings, rods and beams) The essentials of finite-element vibration modelling Symmetry considerations and an outline of group and representation theories Applications of group theory to the vibration of linear mechanical systems Applications of group theory to the vibration of structural grids and cable nets Group-theoretic finite-element and finite-difference formulations Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations acquaints students with the fundamentals of vibration theory, informs experienced structural practitioners on simple and effective techniques for vibration modelling, and provides researchers with new directions for the development of computational vibration procedures.
Bayesian Methods for Structural Dynamics and Civil Engineering
Author: Ka-Veng Yuen
Publisher: John Wiley & Sons
ISBN: 9780470824559
Category : Mathematics
Languages : en
Pages : 320
Book Description
Bayesian methods are a powerful tool in many areas of science and engineering, especially statistical physics, medical sciences, electrical engineering, and information sciences. They are also ideal for civil engineering applications, given the numerous types of modeling and parametric uncertainty in civil engineering problems. For example, earthquake ground motion cannot be predetermined at the structural design stage. Complete wind pressure profiles are difficult to measure under operating conditions. Material properties can be difficult to determine to a very precise level – especially concrete, rock, and soil. For air quality prediction, it is difficult to measure the hourly/daily pollutants generated by cars and factories within the area of concern. It is also difficult to obtain the updated air quality information of the surrounding cities. Furthermore, the meteorological conditions of the day for prediction are also uncertain. These are just some of the civil engineering examples to which Bayesian probabilistic methods are applicable. Familiarizes readers with the latest developments in the field Includes identification problems for both dynamic and static systems Addresses challenging civil engineering problems such as modal/model updating Presents methods applicable to mechanical and aerospace engineering Gives engineers and engineering students a concrete sense of implementation Covers real-world case studies in civil engineering and beyond, such as: structural health monitoring seismic attenuation finite-element model updating hydraulic jump artificial neural network for damage detection air quality prediction Includes other insightful daily-life examples Companion website with MATLAB code downloads for independent practice Written by a leading expert in the use of Bayesian methods for civil engineering problems This book is ideal for researchers and graduate students in civil and mechanical engineering or applied probability and statistics. Practicing engineers interested in the application of statistical methods to solve engineering problems will also find this to be a valuable text. MATLAB code and lecture materials for instructors available at http://www.wiley.com/go/yuen
Publisher: John Wiley & Sons
ISBN: 9780470824559
Category : Mathematics
Languages : en
Pages : 320
Book Description
Bayesian methods are a powerful tool in many areas of science and engineering, especially statistical physics, medical sciences, electrical engineering, and information sciences. They are also ideal for civil engineering applications, given the numerous types of modeling and parametric uncertainty in civil engineering problems. For example, earthquake ground motion cannot be predetermined at the structural design stage. Complete wind pressure profiles are difficult to measure under operating conditions. Material properties can be difficult to determine to a very precise level – especially concrete, rock, and soil. For air quality prediction, it is difficult to measure the hourly/daily pollutants generated by cars and factories within the area of concern. It is also difficult to obtain the updated air quality information of the surrounding cities. Furthermore, the meteorological conditions of the day for prediction are also uncertain. These are just some of the civil engineering examples to which Bayesian probabilistic methods are applicable. Familiarizes readers with the latest developments in the field Includes identification problems for both dynamic and static systems Addresses challenging civil engineering problems such as modal/model updating Presents methods applicable to mechanical and aerospace engineering Gives engineers and engineering students a concrete sense of implementation Covers real-world case studies in civil engineering and beyond, such as: structural health monitoring seismic attenuation finite-element model updating hydraulic jump artificial neural network for damage detection air quality prediction Includes other insightful daily-life examples Companion website with MATLAB code downloads for independent practice Written by a leading expert in the use of Bayesian methods for civil engineering problems This book is ideal for researchers and graduate students in civil and mechanical engineering or applied probability and statistics. Practicing engineers interested in the application of statistical methods to solve engineering problems will also find this to be a valuable text. MATLAB code and lecture materials for instructors available at http://www.wiley.com/go/yuen
Structural Dynamics
Author: Martin Williams
Publisher: CRC Press
ISBN: 1482266008
Category : Architecture
Languages : en
Pages : 279
Book Description
Dynamics is increasingly being identified by consulting engineers as one of the key skills which needs to be taught in civil engineering degree programs. This is driven by the trend towards lighter, more vibration-prone structures, the growth of business in earthquake regions, the identification of new threats such as terrorist attack and the increased availability of sophisticated dynamic analysis tools. Martin Williams presents this short, accessible introduction to the area of structural dynamics. He begins by describing dynamic systems and their representation for analytical purposes. The two main chapters deal with linear analysis of single (SDOF) and multi-degree-of-freedom (MDOF) systems, under free vibration and in response to a variety of forcing functions. Hand analysis of continuous systems is covered briefly to illustrate the key principles. Methods of calculation of non-linear dynamic response is also discussed. Lastly, the key principles of random vibration analysis are presented – this approach is crucial for wind engineering and is increasingly important for other load cases. An appendix briefly summarizes relevant mathematical techniques. Extensive use is made of worked examples, mostly drawn from civil engineering (though not exclusively – there is considerable benefit to be gained from emphasizing the commonality with other branches of engineering). This introductory dynamics textbook is aimed at upper level civil engineering undergraduates and those starting an M.Sc. course in the area.
Publisher: CRC Press
ISBN: 1482266008
Category : Architecture
Languages : en
Pages : 279
Book Description
Dynamics is increasingly being identified by consulting engineers as one of the key skills which needs to be taught in civil engineering degree programs. This is driven by the trend towards lighter, more vibration-prone structures, the growth of business in earthquake regions, the identification of new threats such as terrorist attack and the increased availability of sophisticated dynamic analysis tools. Martin Williams presents this short, accessible introduction to the area of structural dynamics. He begins by describing dynamic systems and their representation for analytical purposes. The two main chapters deal with linear analysis of single (SDOF) and multi-degree-of-freedom (MDOF) systems, under free vibration and in response to a variety of forcing functions. Hand analysis of continuous systems is covered briefly to illustrate the key principles. Methods of calculation of non-linear dynamic response is also discussed. Lastly, the key principles of random vibration analysis are presented – this approach is crucial for wind engineering and is increasingly important for other load cases. An appendix briefly summarizes relevant mathematical techniques. Extensive use is made of worked examples, mostly drawn from civil engineering (though not exclusively – there is considerable benefit to be gained from emphasizing the commonality with other branches of engineering). This introductory dynamics textbook is aimed at upper level civil engineering undergraduates and those starting an M.Sc. course in the area.
Formulas for Structural Dynamics: Tables, Graphs and Solutions
Author: Igor A. Karnovsky
Publisher: McGraw Hill Professional
ISBN: 0071394656
Category : Technology & Engineering
Languages : en
Pages : 560
Book Description
* This information-rich reference book provides solutions to the architectural problem of vibrations in beams, arches and frames in bridges, highways, buildings and tunnels * A must-have for structural designers and civil engineers, especially those involved in the seismic design of buildings * Well-organized into problem-specific chapters, and loaded with detailed charts, graphs, and necessary formulas
Publisher: McGraw Hill Professional
ISBN: 0071394656
Category : Technology & Engineering
Languages : en
Pages : 560
Book Description
* This information-rich reference book provides solutions to the architectural problem of vibrations in beams, arches and frames in bridges, highways, buildings and tunnels * A must-have for structural designers and civil engineers, especially those involved in the seismic design of buildings * Well-organized into problem-specific chapters, and loaded with detailed charts, graphs, and necessary formulas
Structural Dynamics
Author: Einar N. Strømmen
Publisher: Springer Science & Business Media
ISBN: 3319018027
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
This book introduces to the theory of structural dynamics, with focus on civil engineering structures that may be described by line-like beam or beam-column type of systems, or by a system of rectangular plates. Throughout this book the mathematical presentation contains a classical analytical description as well as a description in a discrete finite element format, covering the mathematical development from basic assumptions to the final equations ready for practical dynamic response predictions. Solutions are presented in time domain as well as in frequency domain. Structural Dynamics starts off at a basic level and step by step brings the reader up to a level where the necessary safety considerations to wind or horizontal ground motion induced dynamic design problems can be performed. The special theory of the tuned mass damper has been given a comprehensive treatment, as this is a theory not fully covered elsewhere. For the same reason a chapter on the problem of moving loads on beams has been included.
Publisher: Springer Science & Business Media
ISBN: 3319018027
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
This book introduces to the theory of structural dynamics, with focus on civil engineering structures that may be described by line-like beam or beam-column type of systems, or by a system of rectangular plates. Throughout this book the mathematical presentation contains a classical analytical description as well as a description in a discrete finite element format, covering the mathematical development from basic assumptions to the final equations ready for practical dynamic response predictions. Solutions are presented in time domain as well as in frequency domain. Structural Dynamics starts off at a basic level and step by step brings the reader up to a level where the necessary safety considerations to wind or horizontal ground motion induced dynamic design problems can be performed. The special theory of the tuned mass damper has been given a comprehensive treatment, as this is a theory not fully covered elsewhere. For the same reason a chapter on the problem of moving loads on beams has been included.
Structural Dynamics and Vibration in Practice
Author: Douglas Thorby
Publisher: Butterworth-Heinemann
ISBN: 0080557155
Category : Technology & Engineering
Languages : en
Pages : 419
Book Description
This straightforward text, primer and reference introduces the theoretical, testing and control aspects of structural dynamics and vibration, as practised in industry today. Written by an expert engineer of over 40 years experience, the book comprehensively opens up the dynamic behavior of structures and provides engineers and students with a comprehensive practice based understanding of the key aspects of this key engineering topic. Written with the needs of engineers of a wide range of backgrounds in mind, this book will be a key resource for those studying structural dynamics and vibration at undergraduate level for the first time in aeronautical, mechanical, civil and automotive engineering. It will be ideal for laboratory classes and as a primer for readers returning to the subject, or coming to it fresh at graduate level. It is a guide for students to keep and for practicing engineers to refer to: its worked example approach ensures that engineers will turn to Thorby for advice in many engineering situations. - Presents students and practitioners in all branches of engineering with a unique structural dynamics resource and primer, covering practical approaches to vibration engineering while remaining grounded in the theory of the topic - Written by a leading industry expert, with a worked example lead approach for clarity and ease of understanding - Makes the topic as easy to read as possible, omitting no steps in the development of the subject; covers computer based techniques and finite elements
Publisher: Butterworth-Heinemann
ISBN: 0080557155
Category : Technology & Engineering
Languages : en
Pages : 419
Book Description
This straightforward text, primer and reference introduces the theoretical, testing and control aspects of structural dynamics and vibration, as practised in industry today. Written by an expert engineer of over 40 years experience, the book comprehensively opens up the dynamic behavior of structures and provides engineers and students with a comprehensive practice based understanding of the key aspects of this key engineering topic. Written with the needs of engineers of a wide range of backgrounds in mind, this book will be a key resource for those studying structural dynamics and vibration at undergraduate level for the first time in aeronautical, mechanical, civil and automotive engineering. It will be ideal for laboratory classes and as a primer for readers returning to the subject, or coming to it fresh at graduate level. It is a guide for students to keep and for practicing engineers to refer to: its worked example approach ensures that engineers will turn to Thorby for advice in many engineering situations. - Presents students and practitioners in all branches of engineering with a unique structural dynamics resource and primer, covering practical approaches to vibration engineering while remaining grounded in the theory of the topic - Written by a leading industry expert, with a worked example lead approach for clarity and ease of understanding - Makes the topic as easy to read as possible, omitting no steps in the development of the subject; covers computer based techniques and finite elements
Elements of Structural Dynamics
Author: Glen V. Berg
Publisher:
ISBN: 9780132724937
Category : Earthquake resistant design
Languages : en
Pages : 268
Book Description
Publisher:
ISBN: 9780132724937
Category : Earthquake resistant design
Languages : en
Pages : 268
Book Description
Structural Dynamics for Engineers
Author: Hans Anton Buchholdt
Publisher: Thomas Telford
ISBN: 9780727725592
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
This book has been written to provide practising engineers with an easily understandable introduction to the dynamics of civil engineering whilst ensuring that they acquire an understanding of the theories that form the basis of computer packages.
Publisher: Thomas Telford
ISBN: 9780727725592
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
This book has been written to provide practising engineers with an easily understandable introduction to the dynamics of civil engineering whilst ensuring that they acquire an understanding of the theories that form the basis of computer packages.
Basic Structural Dynamics
Author: James C. Anderson
Publisher: John Wiley & Sons
ISBN: 1118279093
Category : Technology & Engineering
Languages : en
Pages : 253
Book Description
A concise introduction to structural dynamics and earthquake engineering Basic Structural Dynamics serves as a fundamental introduction to the topic of structural dynamics. Covering single and multiple-degree-of-freedom systems while providing an introduction to earthquake engineering, the book keeps the coverage succinct and on topic at a level that is appropriate for undergraduate and graduate students. Through dozens of worked examples based on actual structures, it also introduces readers to MATLAB, a powerful software for solving both simple and complex structural dynamics problems. Conceptually composed of three parts, the book begins with the basic concepts and dynamic response of single-degree-of-freedom systems to various excitations. Next, it covers the linear and nonlinear response of multiple-degree-of-freedom systems to various excitations. Finally, it deals with linear and nonlinear response of structures subjected to earthquake ground motions and structural dynamics-related code provisions for assessing seismic response of structures. Chapter coverage includes: Single-degree-of-freedom systems Free vibration response of SDOF systems Response to harmonic loading Response to impulse loads Response to arbitrary dynamic loading Multiple-degree-of-freedom systems Introduction to nonlinear response of structures Seismic response of structures If you're an undergraduate or graduate student or a practicing structural or mechanical engineer who requires some background on structural dynamics and the effects of earthquakes on structures, Basic Structural Dynamics will quickly get you up to speed on the subject without sacrificing important information.
Publisher: John Wiley & Sons
ISBN: 1118279093
Category : Technology & Engineering
Languages : en
Pages : 253
Book Description
A concise introduction to structural dynamics and earthquake engineering Basic Structural Dynamics serves as a fundamental introduction to the topic of structural dynamics. Covering single and multiple-degree-of-freedom systems while providing an introduction to earthquake engineering, the book keeps the coverage succinct and on topic at a level that is appropriate for undergraduate and graduate students. Through dozens of worked examples based on actual structures, it also introduces readers to MATLAB, a powerful software for solving both simple and complex structural dynamics problems. Conceptually composed of three parts, the book begins with the basic concepts and dynamic response of single-degree-of-freedom systems to various excitations. Next, it covers the linear and nonlinear response of multiple-degree-of-freedom systems to various excitations. Finally, it deals with linear and nonlinear response of structures subjected to earthquake ground motions and structural dynamics-related code provisions for assessing seismic response of structures. Chapter coverage includes: Single-degree-of-freedom systems Free vibration response of SDOF systems Response to harmonic loading Response to impulse loads Response to arbitrary dynamic loading Multiple-degree-of-freedom systems Introduction to nonlinear response of structures Seismic response of structures If you're an undergraduate or graduate student or a practicing structural or mechanical engineer who requires some background on structural dynamics and the effects of earthquakes on structures, Basic Structural Dynamics will quickly get you up to speed on the subject without sacrificing important information.
Structural Dynamics
Author: Yong Bai
Publisher: John Wiley & Sons
ISBN: 1119605601
Category : Technology & Engineering
Languages : en
Pages : 466
Book Description
Written by two experts across multiple disciplines, this is the perfect reference on structural dynamics for veteran engineers and introduction to the field for engineering students. Across many disciplines of engineering, dynamic problems of structures are a primary concern. Civil engineers, mechanical engineers, aircraft engineers, ocean engineers, and engineering students encounter these problems every day, and it is up to them systematically to grasp the basic concepts, calculation principles and calculation methods of structural dynamics. This book focuses on the basic theories and concepts, as well as the application and background of theories and concepts in engineering. Since the basic principles and methods of dynamics are applied to other various engineering fields, this book can also be used as a reference for practicing engineers in the field across many multiple disciplines and for undergraduate and graduate students in other majors as well. The main contents include basic theory of dynamics, establishment of equation of motion, single degree of freedom systems, multi-degree of freedom systems, distributed-parameter systems, stochastic structural vibrations, research projects of structural dynamics, and structural dynamics of marine pipeline and risers. Whether for the veteran engineer or student, this is a must-have for any scientific or engineering library. Useful for students and veteran engineers and scientists alike, this is the only book covering these important issues facing anyone working with coastal models and ocean, coastal, and civil engineering in this area.
Publisher: John Wiley & Sons
ISBN: 1119605601
Category : Technology & Engineering
Languages : en
Pages : 466
Book Description
Written by two experts across multiple disciplines, this is the perfect reference on structural dynamics for veteran engineers and introduction to the field for engineering students. Across many disciplines of engineering, dynamic problems of structures are a primary concern. Civil engineers, mechanical engineers, aircraft engineers, ocean engineers, and engineering students encounter these problems every day, and it is up to them systematically to grasp the basic concepts, calculation principles and calculation methods of structural dynamics. This book focuses on the basic theories and concepts, as well as the application and background of theories and concepts in engineering. Since the basic principles and methods of dynamics are applied to other various engineering fields, this book can also be used as a reference for practicing engineers in the field across many multiple disciplines and for undergraduate and graduate students in other majors as well. The main contents include basic theory of dynamics, establishment of equation of motion, single degree of freedom systems, multi-degree of freedom systems, distributed-parameter systems, stochastic structural vibrations, research projects of structural dynamics, and structural dynamics of marine pipeline and risers. Whether for the veteran engineer or student, this is a must-have for any scientific or engineering library. Useful for students and veteran engineers and scientists alike, this is the only book covering these important issues facing anyone working with coastal models and ocean, coastal, and civil engineering in this area.