Author: Luc Pronzato
Publisher: CRC Press
ISBN: 9780849303364
Category : Mathematics
Languages : en
Pages : 240
Book Description
Certain algorithms that are known to converge can be renormalized or "blown up" at each iteration so that their local behavior can be seen. This creates dynamical systems that we can study with modern tools, such as ergodic theory, chaos, special attractors, and Lyapounov exponents. Furthermore, we can translate the rates of convergence into less studied exponents known as Renyi entropies. This all feeds back to suggest new algorithms with faster rates of convergence. For example, in line-search, we can improve upon the Golden Section algorithm with new classes of algorithms that have their own special-and sometimes chaotic-dynamical systems. The ellipsoidal algorithms of linear and convex programming have fast, "deep cut" versions whose dynamical systems contain cyclic attractors. And ordinary steepest descent has, buried within, a beautiful fractal that controls the gateway to a special two-point attractor. Faster "relaxed" versions exhibit classical period doubling. Dynamical Search presents a stimulating introduction to a brand new field - the union of dynamical systems and optimization. It will prove fascinating and open doors to new areas of investigation for researchers in both fields, plus those in statistics and computer science.
Dynamical Search
Author: Luc Pronzato
Publisher: CRC Press
ISBN: 9780849303364
Category : Mathematics
Languages : en
Pages : 240
Book Description
Certain algorithms that are known to converge can be renormalized or "blown up" at each iteration so that their local behavior can be seen. This creates dynamical systems that we can study with modern tools, such as ergodic theory, chaos, special attractors, and Lyapounov exponents. Furthermore, we can translate the rates of convergence into less studied exponents known as Renyi entropies. This all feeds back to suggest new algorithms with faster rates of convergence. For example, in line-search, we can improve upon the Golden Section algorithm with new classes of algorithms that have their own special-and sometimes chaotic-dynamical systems. The ellipsoidal algorithms of linear and convex programming have fast, "deep cut" versions whose dynamical systems contain cyclic attractors. And ordinary steepest descent has, buried within, a beautiful fractal that controls the gateway to a special two-point attractor. Faster "relaxed" versions exhibit classical period doubling. Dynamical Search presents a stimulating introduction to a brand new field - the union of dynamical systems and optimization. It will prove fascinating and open doors to new areas of investigation for researchers in both fields, plus those in statistics and computer science.
Publisher: CRC Press
ISBN: 9780849303364
Category : Mathematics
Languages : en
Pages : 240
Book Description
Certain algorithms that are known to converge can be renormalized or "blown up" at each iteration so that their local behavior can be seen. This creates dynamical systems that we can study with modern tools, such as ergodic theory, chaos, special attractors, and Lyapounov exponents. Furthermore, we can translate the rates of convergence into less studied exponents known as Renyi entropies. This all feeds back to suggest new algorithms with faster rates of convergence. For example, in line-search, we can improve upon the Golden Section algorithm with new classes of algorithms that have their own special-and sometimes chaotic-dynamical systems. The ellipsoidal algorithms of linear and convex programming have fast, "deep cut" versions whose dynamical systems contain cyclic attractors. And ordinary steepest descent has, buried within, a beautiful fractal that controls the gateway to a special two-point attractor. Faster "relaxed" versions exhibit classical period doubling. Dynamical Search presents a stimulating introduction to a brand new field - the union of dynamical systems and optimization. It will prove fascinating and open doors to new areas of investigation for researchers in both fields, plus those in statistics and computer science.
Optimization and Dynamical Systems
Author: Uwe Helmke
Publisher: Springer Science & Business Media
ISBN: 1447134672
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
This work is aimed at mathematics and engineering graduate students and researchers in the areas of optimization, dynamical systems, control sys tems, signal processing, and linear algebra. The motivation for the results developed here arises from advanced engineering applications and the emer gence of highly parallel computing machines for tackling such applications. The problems solved are those of linear algebra and linear systems the ory, and include such topics as diagonalizing a symmetric matrix, singular value decomposition, balanced realizations, linear programming, sensitivity minimization, and eigenvalue assignment by feedback control. The tools are those, not only of linear algebra and systems theory, but also of differential geometry. The problems are solved via dynamical sys tems implementation, either in continuous time or discrete time , which is ideally suited to distributed parallel processing. The problems tackled are indirectly or directly concerned with dynamical systems themselves, so there is feedback in that dynamical systems are used to understand and optimize dynamical systems. One key to the new research results has been the recent discovery of rather deep existence and uniqueness results for the solution of certain matrix least squares optimization problems in geomet ric invariant theory. These problems, as well as many other optimization problems arising in linear algebra and systems theory, do not always admit solutions which can be found by algebraic methods.
Publisher: Springer Science & Business Media
ISBN: 1447134672
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
This work is aimed at mathematics and engineering graduate students and researchers in the areas of optimization, dynamical systems, control sys tems, signal processing, and linear algebra. The motivation for the results developed here arises from advanced engineering applications and the emer gence of highly parallel computing machines for tackling such applications. The problems solved are those of linear algebra and linear systems the ory, and include such topics as diagonalizing a symmetric matrix, singular value decomposition, balanced realizations, linear programming, sensitivity minimization, and eigenvalue assignment by feedback control. The tools are those, not only of linear algebra and systems theory, but also of differential geometry. The problems are solved via dynamical sys tems implementation, either in continuous time or discrete time , which is ideally suited to distributed parallel processing. The problems tackled are indirectly or directly concerned with dynamical systems themselves, so there is feedback in that dynamical systems are used to understand and optimize dynamical systems. One key to the new research results has been the recent discovery of rather deep existence and uniqueness results for the solution of certain matrix least squares optimization problems in geomet ric invariant theory. These problems, as well as many other optimization problems arising in linear algebra and systems theory, do not always admit solutions which can be found by algebraic methods.
Linear, Time-varying Approximations to Nonlinear Dynamical Systems
Author: Maria Tomas-Rodriguez
Publisher: Springer Science & Business Media
ISBN: 184996100X
Category : Mathematics
Languages : en
Pages : 303
Book Description
Linear, Time-varying Approximations to Nonlinear Dynamical Systems introduces a new technique for analysing and controlling nonlinear systems. This method is general and requires only very mild conditions on the system nonlinearities, setting it apart from other techniques such as those – well-known – based on differential geometry. The authors cover many aspects of nonlinear systems including stability theory, control design and extensions to distributed parameter systems. Many of the classical and modern control design methods which can be applied to linear, time-varying systems can be extended to nonlinear systems by this technique. The implementation of the control is therefore simple and can be done with well-established classical methods. Many aspects of nonlinear systems, such as spectral theory which is important for the generalisation of frequency domain methods, can be approached by this method.
Publisher: Springer Science & Business Media
ISBN: 184996100X
Category : Mathematics
Languages : en
Pages : 303
Book Description
Linear, Time-varying Approximations to Nonlinear Dynamical Systems introduces a new technique for analysing and controlling nonlinear systems. This method is general and requires only very mild conditions on the system nonlinearities, setting it apart from other techniques such as those – well-known – based on differential geometry. The authors cover many aspects of nonlinear systems including stability theory, control design and extensions to distributed parameter systems. Many of the classical and modern control design methods which can be applied to linear, time-varying systems can be extended to nonlinear systems by this technique. The implementation of the control is therefore simple and can be done with well-established classical methods. Many aspects of nonlinear systems, such as spectral theory which is important for the generalisation of frequency domain methods, can be approached by this method.
Applied Dynamic Programming for Optimization of Dynamical Systems
Author: Rush D. Robinett III
Publisher: SIAM
ISBN: 9780898718676
Category : Mathematics
Languages : en
Pages : 278
Book Description
Based on the results of over 10 years of research and development by the authors, this book presents a broad cross section of dynamic programming (DP) techniques applied to the optimization of dynamical systems. The main goal of the research effort was to develop a robust path planning/trajectory optimization tool that did not require an initial guess. The goal was partially met with a combination of DP and homotopy algorithms. DP algorithms are presented here with a theoretical development, and their successful application to variety of practical engineering problems is emphasized.
Publisher: SIAM
ISBN: 9780898718676
Category : Mathematics
Languages : en
Pages : 278
Book Description
Based on the results of over 10 years of research and development by the authors, this book presents a broad cross section of dynamic programming (DP) techniques applied to the optimization of dynamical systems. The main goal of the research effort was to develop a robust path planning/trajectory optimization tool that did not require an initial guess. The goal was partially met with a combination of DP and homotopy algorithms. DP algorithms are presented here with a theoretical development, and their successful application to variety of practical engineering problems is emphasized.
Fractional Dynamical Systems: Methods, Algorithms and Applications
Author: Piotr Kulczycki
Publisher: Springer Nature
ISBN: 3030899721
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
This book presents a wide and comprehensive spectrum of issues and problems related to fractional-order dynamical systems. It is meant to be a full-fledge, comprehensive presentation of many aspects related to the broadly perceived fractional-order dynamical systems which constitute an extension of the traditional integer-order-type descriptions. This implies far-reaching consequences, both analytic and algorithmic, because—in general—properties of the traditional integer-order systems cannot be directly extended by a straightforward generalization to fractional-order systems, modeled by fractional-order differential equations involving derivatives of an non-integer order. This can be useful for describing and analyzing, for instance, anomalies in the behavior of various systems, chaotic behavior, etc. The book contains both analytic contributions with state-of-the-art and theoretical foundations, algorithmic implementation of tools and techniques, and—finally—some examples of relevant and successful practical applications.
Publisher: Springer Nature
ISBN: 3030899721
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
This book presents a wide and comprehensive spectrum of issues and problems related to fractional-order dynamical systems. It is meant to be a full-fledge, comprehensive presentation of many aspects related to the broadly perceived fractional-order dynamical systems which constitute an extension of the traditional integer-order-type descriptions. This implies far-reaching consequences, both analytic and algorithmic, because—in general—properties of the traditional integer-order systems cannot be directly extended by a straightforward generalization to fractional-order systems, modeled by fractional-order differential equations involving derivatives of an non-integer order. This can be useful for describing and analyzing, for instance, anomalies in the behavior of various systems, chaotic behavior, etc. The book contains both analytic contributions with state-of-the-art and theoretical foundations, algorithmic implementation of tools and techniques, and—finally—some examples of relevant and successful practical applications.
Optimization and Control of Dynamic Systems
Author: Henryk Górecki
Publisher: Springer
ISBN: 3319626469
Category : Technology & Engineering
Languages : en
Pages : 679
Book Description
This book offers a comprehensive presentation of optimization and polyoptimization methods. The examples included are taken from various domains: mechanics, electrical engineering, economy, informatics, and automatic control, making the book especially attractive. With the motto “from general abstraction to practical examples,” it presents the theory and applications of optimization step by step, from the function of one variable and functions of many variables with constraints, to infinite dimensional problems (calculus of variations), a continuation of which are optimization methods of dynamical systems, that is, dynamic programming and the maximum principle, and finishing with polyoptimization methods. It includes numerous practical examples, e.g., optimization of hierarchical systems, optimization of time-delay systems, rocket stabilization modeled by balancing a stick on a finger, a simplified version of the journey to the moon, optimization of hybrid systems and of the electrical long transmission line, analytical determination of extremal errors in dynamical systems of the rth order, multicriteria optimization with safety margins (the skeleton method), and ending with a dynamic model of bicycle. The book is aimed at readers who wish to study modern optimization methods, from problem formulation and proofs to practical applications illustrated by inspiring concrete examples.
Publisher: Springer
ISBN: 3319626469
Category : Technology & Engineering
Languages : en
Pages : 679
Book Description
This book offers a comprehensive presentation of optimization and polyoptimization methods. The examples included are taken from various domains: mechanics, electrical engineering, economy, informatics, and automatic control, making the book especially attractive. With the motto “from general abstraction to practical examples,” it presents the theory and applications of optimization step by step, from the function of one variable and functions of many variables with constraints, to infinite dimensional problems (calculus of variations), a continuation of which are optimization methods of dynamical systems, that is, dynamic programming and the maximum principle, and finishing with polyoptimization methods. It includes numerous practical examples, e.g., optimization of hierarchical systems, optimization of time-delay systems, rocket stabilization modeled by balancing a stick on a finger, a simplified version of the journey to the moon, optimization of hybrid systems and of the electrical long transmission line, analytical determination of extremal errors in dynamical systems of the rth order, multicriteria optimization with safety margins (the skeleton method), and ending with a dynamic model of bicycle. The book is aimed at readers who wish to study modern optimization methods, from problem formulation and proofs to practical applications illustrated by inspiring concrete examples.
Differential Dynamical Systems, Revised Edition
Author: James D. Meiss
Publisher: SIAM
ISBN: 161197464X
Category : Mathematics
Languages : en
Pages : 410
Book Description
Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.
Publisher: SIAM
ISBN: 161197464X
Category : Mathematics
Languages : en
Pages : 410
Book Description
Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.
Optimization of Dynamic Systems
Author: S. K. Agrawal
Publisher: Springer Science & Business Media
ISBN: 9401591490
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
This textbook deals with optimization of dynamic systems. The motivation for undertaking this task is as follows: There is an ever increasing need to produce more efficient, accurate, and lightweight mechanical and electromechanical de vices. Thus, the typical graduating B.S. and M.S. candidate is required to have some familiarity with techniques for improving the performance of dynamic systems. Unfortunately, existing texts dealing with system improvement via optimization remain inaccessible to many of these students and practicing en gineers. It is our goal to alleviate this difficulty by presenting to seniors and beginning graduate students practical efficient techniques for solving engineer ing system optimization problems. The text has been used in optimal control and dynamic system optimization courses at the University of Deleware, the University of Washington and Ohio University over the past four years. The text covers the following material in a straightforward detailed manner: • Static Optimization: The problem of optimizing a function that depends on static variables (i.e., parameters) is considered. Problems with equality and inequality constraints are addressed. • Numerical Methods: Static Optimization: Numerical algorithms for the solution of static optimization problems are presented here. The methods presented can accommodate both the unconstrained and constrained static optimization problems. • Calculus of Variation: The necessary and sufficient conditions for the ex tremum of functionals are presented. Both the fixed final time and free final time problems are considered.
Publisher: Springer Science & Business Media
ISBN: 9401591490
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
This textbook deals with optimization of dynamic systems. The motivation for undertaking this task is as follows: There is an ever increasing need to produce more efficient, accurate, and lightweight mechanical and electromechanical de vices. Thus, the typical graduating B.S. and M.S. candidate is required to have some familiarity with techniques for improving the performance of dynamic systems. Unfortunately, existing texts dealing with system improvement via optimization remain inaccessible to many of these students and practicing en gineers. It is our goal to alleviate this difficulty by presenting to seniors and beginning graduate students practical efficient techniques for solving engineer ing system optimization problems. The text has been used in optimal control and dynamic system optimization courses at the University of Deleware, the University of Washington and Ohio University over the past four years. The text covers the following material in a straightforward detailed manner: • Static Optimization: The problem of optimizing a function that depends on static variables (i.e., parameters) is considered. Problems with equality and inequality constraints are addressed. • Numerical Methods: Static Optimization: Numerical algorithms for the solution of static optimization problems are presented here. The methods presented can accommodate both the unconstrained and constrained static optimization problems. • Calculus of Variation: The necessary and sufficient conditions for the ex tremum of functionals are presented. Both the fixed final time and free final time problems are considered.
Dynamic Impulse Systems
Author: S.T. Zavalishchin
Publisher: Springer Science & Business Media
ISBN: 9401588937
Category : Mathematics
Languages : en
Pages : 268
Book Description
A number of optimization problems of the mechanics of space flight and the motion of walking robots and manipulators, and of quantum physics, eco momics and biology, have an irregular structure: classical variational proce dures do not formally make it possible to find optimal controls that, as we explain, have an impulse character. This and other well-known facts lead to the necessity for constructing dynamical models using the concept of a gener alized function (Schwartz distribution). The problem ofthe systematization of such models is very important. In particular, the problem of the construction of the general form of linear and nonlinear operator equations in distributions is timely. Another problem is related to the proper determination of solutions of equations that have nonlinear operations over generalized functions in their description. It is well-known that "the value of a distribution at a point" has no meaning. As a result the problem to construct the concept of stability for generalized processes arises. Finally, optimization problems for dynamic systems in distributions need finding optimality conditions. This book contains results that we have obtained in the above-mentioned directions. The aim of the book is to provide for electrical and mechanical engineers or mathematicians working in applications, a general and systematic treat ment of dynamic systems based on up-to-date mathematical methods and to demonstrate the power of these methods in solving dynamics of systems and applied control problems.
Publisher: Springer Science & Business Media
ISBN: 9401588937
Category : Mathematics
Languages : en
Pages : 268
Book Description
A number of optimization problems of the mechanics of space flight and the motion of walking robots and manipulators, and of quantum physics, eco momics and biology, have an irregular structure: classical variational proce dures do not formally make it possible to find optimal controls that, as we explain, have an impulse character. This and other well-known facts lead to the necessity for constructing dynamical models using the concept of a gener alized function (Schwartz distribution). The problem ofthe systematization of such models is very important. In particular, the problem of the construction of the general form of linear and nonlinear operator equations in distributions is timely. Another problem is related to the proper determination of solutions of equations that have nonlinear operations over generalized functions in their description. It is well-known that "the value of a distribution at a point" has no meaning. As a result the problem to construct the concept of stability for generalized processes arises. Finally, optimization problems for dynamic systems in distributions need finding optimality conditions. This book contains results that we have obtained in the above-mentioned directions. The aim of the book is to provide for electrical and mechanical engineers or mathematicians working in applications, a general and systematic treat ment of dynamic systems based on up-to-date mathematical methods and to demonstrate the power of these methods in solving dynamics of systems and applied control problems.
Dynamical Systems in Applications
Author: Jan Awrejcewicz
Publisher: Springer
ISBN: 3319966014
Category : Mathematics
Languages : en
Pages : 507
Book Description
The book is intended for all those who are interested in application problems related to dynamical systems. It provides an overview of recent findings on dynamical systems in the broadest sense. Divided into 46 contributed chapters, it addresses a diverse range of problems. The issues discussed include: Finite Element Analysis of optomechatronic choppers with rotational shafts; computational based constrained dynamics generation for a model of a crane with compliant support; model of a kinetic energy recuperation system for city buses; energy accumulation in mechanical resonance; hysteretic properties of shell dampers; modeling a water hammer with quasi-steady and unsteady friction in viscoelastic conduits; application of time-frequency methods for the assessment of gas metal arc welding conditions; non-linear modeling of the human body’s dynamic load; experimental evaluation of mathematical and artificial neural network modeling for energy storage systems; interaction of bridge cables and wake in vortex-induced vibrations; and the Sommerfeld effect in a single DOF spring-mass-damper system with non-ideal excitation.
Publisher: Springer
ISBN: 3319966014
Category : Mathematics
Languages : en
Pages : 507
Book Description
The book is intended for all those who are interested in application problems related to dynamical systems. It provides an overview of recent findings on dynamical systems in the broadest sense. Divided into 46 contributed chapters, it addresses a diverse range of problems. The issues discussed include: Finite Element Analysis of optomechatronic choppers with rotational shafts; computational based constrained dynamics generation for a model of a crane with compliant support; model of a kinetic energy recuperation system for city buses; energy accumulation in mechanical resonance; hysteretic properties of shell dampers; modeling a water hammer with quasi-steady and unsteady friction in viscoelastic conduits; application of time-frequency methods for the assessment of gas metal arc welding conditions; non-linear modeling of the human body’s dynamic load; experimental evaluation of mathematical and artificial neural network modeling for energy storage systems; interaction of bridge cables and wake in vortex-induced vibrations; and the Sommerfeld effect in a single DOF spring-mass-damper system with non-ideal excitation.