Dynamic Stability and Bifurcation in Nonconservative Mechanics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Dynamic Stability and Bifurcation in Nonconservative Mechanics PDF full book. Access full book title Dynamic Stability and Bifurcation in Nonconservative Mechanics by Davide Bigoni. Download full books in PDF and EPUB format.

Dynamic Stability and Bifurcation in Nonconservative Mechanics

Dynamic Stability and Bifurcation in Nonconservative Mechanics PDF Author: Davide Bigoni
Publisher: Springer
ISBN: 3319937227
Category : Science
Languages : en
Pages : 190

Book Description
The book offers a unified view on classical results and recent advances in the dynamics of nonconservative systems. The theoretical fundamentals are presented systematically and include: Lagrangian and Hamiltonian formalism, non-holonomic constraints, Lyapunov stability theory, Krein theory of spectra of Hamiltonian systems and modes of negative and positive energy, anomalous Doppler effect, reversible systems, sensitivity analysis of non-self-adjoint operators, dissipation-induced instabilities, local and global instabilities. They are applied to engineering situations such as the coupled mode flutter of wings, flags and pipes, flutter in granular materials, piezoelectric mechanical metamaterials, wave dynamics of infinitely long structures, radiative damping, stability of high-speed trains, experimental realization of follower forces, soft-robot locomotion, wave energy converters, friction-induced instabilities, brake squeal, non-holonomic sailing, dynamics of moving continua, and stability of bicycles and walking robots. The book responds to a demand in the modern theory of nonconservative systems coming from the growing number of scientific and engineering disciplines including physics, fluid and solids mechanics, fluid-structure interactions, and modern multidisciplinary research areas such as biomechanics, micro- and nanomechanics, optomechanics, robotics, and material science. It is targeted at both young and experienced researchers and engineers working in fields associated with the dynamics of structures and materials. The book will help to get a comprehensive and systematic knowledge on the stability, bifurcations and dynamics of nonconservative systems and establish links between approaches and methods developed in different areas of mechanics and physics and modern applied mathematics.

Dynamic Stability and Bifurcation in Nonconservative Mechanics

Dynamic Stability and Bifurcation in Nonconservative Mechanics PDF Author: Davide Bigoni
Publisher: Springer
ISBN: 3319937227
Category : Science
Languages : en
Pages : 190

Book Description
The book offers a unified view on classical results and recent advances in the dynamics of nonconservative systems. The theoretical fundamentals are presented systematically and include: Lagrangian and Hamiltonian formalism, non-holonomic constraints, Lyapunov stability theory, Krein theory of spectra of Hamiltonian systems and modes of negative and positive energy, anomalous Doppler effect, reversible systems, sensitivity analysis of non-self-adjoint operators, dissipation-induced instabilities, local and global instabilities. They are applied to engineering situations such as the coupled mode flutter of wings, flags and pipes, flutter in granular materials, piezoelectric mechanical metamaterials, wave dynamics of infinitely long structures, radiative damping, stability of high-speed trains, experimental realization of follower forces, soft-robot locomotion, wave energy converters, friction-induced instabilities, brake squeal, non-holonomic sailing, dynamics of moving continua, and stability of bicycles and walking robots. The book responds to a demand in the modern theory of nonconservative systems coming from the growing number of scientific and engineering disciplines including physics, fluid and solids mechanics, fluid-structure interactions, and modern multidisciplinary research areas such as biomechanics, micro- and nanomechanics, optomechanics, robotics, and material science. It is targeted at both young and experienced researchers and engineers working in fields associated with the dynamics of structures and materials. The book will help to get a comprehensive and systematic knowledge on the stability, bifurcations and dynamics of nonconservative systems and establish links between approaches and methods developed in different areas of mechanics and physics and modern applied mathematics.

Nonconservative Stability Problems of Modern Physics

Nonconservative Stability Problems of Modern Physics PDF Author: Oleg N. Kirillov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110655403
Category : Science
Languages : en
Pages : 548

Book Description
This updated revision gives a complete and topical overview on Nonconservative Stability which is essential for many areas of science and technology ranging from particles trapping in optical tweezers and dynamics of subcellular structures to dissipative and radiative instabilities in fluid mechanics, astrophysics and celestial mechanics. The author presents relevant mathematical concepts as well as rigorous stability results and numerous classical and contemporary examples from non-conservative mechanics and non-Hermitian physics. New coverage of ponderomotive magnetism, experimental detection of Ziegler’s destabilization phenomenon and theory of double-diffusive instabilities in magnetohydrodynamics.

Dynamic Stability of Columns under Nonconservative Forces

Dynamic Stability of Columns under Nonconservative Forces PDF Author: Yoshihiko Sugiyama
Publisher: Springer
ISBN: 3030005720
Category : Science
Languages : en
Pages : 236

Book Description
This book treats dynamic stability of structures under nonconservative forces. it is not a mathematics-based, but rather a dynamics-phenomena-oriented monograph, written with a full experimental background. Starting with fundamentals on stability of columns under nonconservative forces, it then deals with the divergence of Euler’s column under a dead (conservative) loading from a view point of dynamic stability. Three experiments with cantilevered columns under a rocket-based follower force are described to present the verifiability of nonconservative problems of structural stability. Dynamic stability of columns under pulsating forces is discussed through analog experiments, and by analytical and experimental procedures together with related theories. Throughout the volume the authors retain a good balance between theory and experiments on dynamic stability of columns under nonconservative loading, offering a new window to dynamic stability of structures, promoting student- and scientist-friendly experiments.

Modern Trends in Structural and Solid Mechanics 1

Modern Trends in Structural and Solid Mechanics 1 PDF Author: Noel Challamel
Publisher: John Wiley & Sons
ISBN: 1786307146
Category : Science
Languages : en
Pages : 306

Book Description
This book - comprised of three separate volumes - presents the recent developments and research discoveries in structural and solid mechanics; it is dedicated to Professor Isaac Elishakoff. This first volume is devoted to the statics and stability of solid and structural members. Modern Trends in Structural and Solid Mechanics 1 has broad scope, covering topics such as: buckling of discrete systems (elastic chains, lattices with short and long range interactions, and discrete arches), buckling of continuous structural elements including beams, arches and plates, static investigation of composite plates, exact solutions of plate problems, elastic and inelastic buckling, dynamic buckling under impulsive loading, buckling and post-buckling investigations, buckling of conservative and non-conservative systems and buckling of micro and macro-systems. This book is intended for graduate students and researchers in the field of theoretical and applied mechanics.

Nonconservative Stability Problems of Modern Physics

Nonconservative Stability Problems of Modern Physics PDF Author: Oleg N. Kirillov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110653869
Category : Science
Languages : en
Pages : 484

Book Description
This updated revision gives a complete and topical overview on Nonconservative Stability which is essential for many areas of science and technology ranging from particles trapping in optical tweezers and dynamics of subcellular structures to dissipative and radiative instabilities in fluid mechanics, astrophysics and celestial mechanics. The author presents relevant mathematical concepts as well as rigorous stability results and numerous classical and contemporary examples from non-conservative mechanics and non-Hermitian physics. New coverage of ponderomotive magnetism, experimental detection of Ziegler’s destabilization phenomenon and theory of double-diffusive instabilities in magnetohydrodynamics.

Bifurcation and Stability of Dissipative Systems

Bifurcation and Stability of Dissipative Systems PDF Author: Q.S. Nguyen
Publisher: Springer
ISBN: 3709127122
Category : Science
Languages : en
Pages : 296

Book Description
The first theme concerns the plastic buckling of structures in the spirit of Hill’s classical approach. Non-bifurcation and stability criteria are introduced and post-bifurcation analysis performed by asymptotic development method in relation with Hutchinson’s work. Some recent results on the generalized standard model are given and their connection to Hill’s general formulation is presented. Instability phenomena of inelastic flow processes such as strain localization and necking are discussed. The second theme concerns stability and bifurcation problems in internally damaged or cracked colids. In brittle fracture or brittle damage, the evolution law of crack lengths or damage parameters is time-independent like in plasticity and leads to a similar mathematical description of the quasi-static evolution. Stability and non-bifurcation criteria in the sense of Hill can be again obtained from the discussion of the rate response.

Stability and Bifurcation of Structures

Stability and Bifurcation of Structures PDF Author: Angelo Luongo
Publisher: Springer Nature
ISBN: 3031275721
Category : Technology & Engineering
Languages : en
Pages : 712

Book Description
This book overcomes the separation existing in literature between the static and the dynamic bifurcation worlds. It brings together buckling and post-buckling problems with nonlinear dynamics, the bridge being represented by the perturbation method, i.e., a mathematical tool that allows for solving static and dynamic problems virtually in the same way. The book is organized as follows: Chapter one gives an overview; Chapter two illustrates phenomenological aspect of static and dynamic bifurcations; Chapter three deals with linear stability analysis of dynamical systems; Chapter four and five discuss the general theory and present examples of buckling and post-buckling of elastic structures; Chapter six describes a linearized approach to buckling, usually adopted in the technical literature, in which pre-critical deformations are neglected; Chapters seven to ten, analyze elastic and elasto-plastic buckling of planar systems of beams, thin-walled beams and plate assemblies, respectively; Chapters eleven to thirteen, illustrate dynamic instability phenomena, such as flutter induced by follower forces, aeroelastic bifurcations caused by wind flow, and parametric excitation triggered by pulsating loads. Finally, Chapter fourteen discusses a large gallery of solved problems, concerning topics covered in the book. An Appendix presents the Vlasov theory of open thin-walled beams. The book is devoted to advanced undergraduate and graduate students, as well as engineers and practitioners. The methods illustrated here are immediately applicable to model real problems. The Book Introduces, in a simple way, complex concepts of bifurcation theory, by making use of elementary mathematics Gives a comprehensive overview of bifurcation of linear and nonlinear structures, in static and dynamic fields Contains a chapter in which many problems are solved, either analytically or numerically, and results commented

Nonlinear Physical Systems

Nonlinear Physical Systems PDF Author: Oleg N. Kirillov
Publisher: John Wiley & Sons
ISBN: 111857754X
Category : Mathematics
Languages : en
Pages : 328

Book Description
Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems. Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics, and dissipation-induced instabilities are treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. Each chapter contains mechanical and physical examples, and the combination of advanced material and more tutorial elements makes this book attractive for both experts and non-specialists keen to expand their knowledge on modern methods and trends in stability theory. Contents 1. Surprising Instabilities of Simple Elastic Structures, Davide Bigoni, Diego Misseroni, Giovanni Noselli and Daniele Zaccaria. 2. WKB Solutions Near an Unstable Equilibrium and Applications, Jean-François Bony, Setsuro Fujiié, Thierry Ramond and Maher Zerzeri, partially supported by French ANR project NOSEVOL. 3. The Sign Exchange Bifurcation in a Family of Linear Hamiltonian Systems, Richard Cushman, Johnathan Robbins and Dimitrii Sadovskii. 4. Dissipation Effect on Local and Global Fluid-Elastic Instabilities, Olivier Doaré. 5. Tunneling, Librations and Normal Forms in a Quantum Double Well with a Magnetic Field, Sergey Yu. Dobrokhotov and Anatoly Yu. Anikin. 6. Stability of Dipole Gap Solitons in Two-Dimensional Lattice Potentials, Nir Dror and Boris A. Malomed. 7. Representation of Wave Energy of a Rotating Flow in Terms of the Dispersion Relation, Yasuhide Fukumoto, Makoto Hirota and Youichi Mie. 8. Determining the Stability Domain of Perturbed Four-Dimensional Systems in 1:1 Resonance, Igor Hoveijn and Oleg N. Kirillov. 9. Index Theorems for Polynomial Pencils, Richard Kollár and Radomír Bosák. 10. Investigating Stability and Finding New Solutions in Conservative Fluid Flows Through Bifurcation Approaches, Paolo Luzzatto-Fegiz and Charles H.K. Williamson. 11. Evolution Equations for Finite Amplitude Waves in Parallel Shear Flows, Sherwin A. Maslowe. 12. Continuum Hamiltonian Hopf Bifurcation I, Philip J. Morrison and George I. Hagstrom. 13. Continuum Hamiltonian Hopf Bifurcation II, George I. Hagstrom and Philip J. Morrison. 14. Energy Stability Analysis for a Hybrid Fluid-Kinetic Plasma Model, Philip J. Morrison, Emanuele Tassi and Cesare Tronci. 15. Accurate Estimates for the Exponential Decay of Semigroups with Non-Self-Adjoint Generators, Francis Nier. 16. Stability Optimization for Polynomials and Matrices, Michael L. Overton. 17. Spectral Stability of Nonlinear Waves in KdV-Type Evolution Equations, Dmitry E. Pelinovsky. 18. Unfreezing Casimir Invariants: Singular Perturbations Giving Rise to Forbidden Instabilities, Zensho Yoshida and Philip J. Morrison. About the Authors Oleg N. Kirillov has been a Research Fellow at the Magneto-Hydrodynamics Division of the Helmholtz-Zentrum Dresden-Rossendorf in Germany since 2011. His research interests include non-conservative stability problems of structural mechanics and physics, perturbation theory of non-self-adjoint boundary eigenvalue problems, magnetohydrodynamics, friction-induced oscillations, dissipation-induced instabilities and non-Hermitian problems of optics and microwave physics. Since 2013 he has served as an Associate Editor for the journal Frontiers in Mathematical Physics. Dmitry E. Pelinovsky has been Professor at McMaster University in Canada since 2000. His research profile includes work with nonlinear partial differential equations, discrete dynamical systems, spectral theory, integrable systems, and numerical analysis. He served as the guest editor of the special issue of the journals Chaos in 2005 and Applicable Analysis in 2010. He is an Associate Editor of the journal Communications in Nonlinear Science and Numerical Simulations. This book is devoted to the problems of spectral analysis, stability and bifurcations arising from the nonlinear partial differential equations of modern physics. Leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics present state-of-the-art approaches to a wide spectrum of new challenging stability problems. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics and dissipation-induced instabilities will be treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. All chapters contain mechanical and physical examples and combine both tutorial and advanced sections, making them attractive both to experts in the field and non-specialists interested in knowing more about modern methods and trends in stability theory.

Intermediate Dynamics for Engineers

Intermediate Dynamics for Engineers PDF Author: Oliver M. O'Reilly
Publisher: Cambridge University Press
ISBN: 1108494218
Category : Science
Languages : en
Pages : 545

Book Description
A fully updated second edition providing a systematic treatment of engineering dynamics that covers Newton-Euler and Lagrangian approaches. It includes two completely revised chapters, a 350-page solutions manual for instructors, and numerous structured examples and exercises, and is suitable for both senior-level and first-year graduate courses.

Bifurcation and Chaos in Nonsmooth Mechanical Systems

Bifurcation and Chaos in Nonsmooth Mechanical Systems PDF Author: Jan Awrejcewicz
Publisher: World Scientific
ISBN: 9812384596
Category : Science
Languages : en
Pages : 564

Book Description
This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical integrators, solvers, etc.) are extended to the nonsmooth frame. Many models and applications arising from mechanical engineering, electrical circuits, material behavior and civil engineering are investigated to illustrate theoretical and computational developments.