Simultaneous Statistical Inference PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Simultaneous Statistical Inference PDF full book. Access full book title Simultaneous Statistical Inference by Thorsten Dickhaus. Download full books in PDF and EPUB format.

Simultaneous Statistical Inference

Simultaneous Statistical Inference PDF Author: Thorsten Dickhaus
Publisher: Springer Science & Business Media
ISBN: 3642451829
Category : Science
Languages : en
Pages : 182

Book Description
This monograph will provide an in-depth mathematical treatment of modern multiple test procedures controlling the false discovery rate (FDR) and related error measures, particularly addressing applications to fields such as genetics, proteomics, neuroscience and general biology. The book will also include a detailed description how to implement these methods in practice. Moreover new developments focusing on non-standard assumptions are also included, especially multiple tests for discrete data. The book primarily addresses researchers and practitioners but will also be beneficial for graduate students.

Simultaneous Statistical Inference

Simultaneous Statistical Inference PDF Author: Thorsten Dickhaus
Publisher: Springer Science & Business Media
ISBN: 3642451829
Category : Science
Languages : en
Pages : 182

Book Description
This monograph will provide an in-depth mathematical treatment of modern multiple test procedures controlling the false discovery rate (FDR) and related error measures, particularly addressing applications to fields such as genetics, proteomics, neuroscience and general biology. The book will also include a detailed description how to implement these methods in practice. Moreover new developments focusing on non-standard assumptions are also included, especially multiple tests for discrete data. The book primarily addresses researchers and practitioners but will also be beneficial for graduate students.

Journal of the American Statistical Association

Journal of the American Statistical Association PDF Author:
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 896

Book Description


Semiparametric Regression

Semiparametric Regression PDF Author: David Ruppert
Publisher: Cambridge University Press
ISBN: 9780521785167
Category : Mathematics
Languages : en
Pages : 410

Book Description
Semiparametric regression is concerned with the flexible incorporation of non-linear functional relationships in regression analyses. Any application area that benefits from regression analysis can also benefit from semiparametric regression. Assuming only a basic familiarity with ordinary parametric regression, this user-friendly book explains the techniques and benefits of semiparametric regression in a concise and modular fashion. The authors make liberal use of graphics and examples plus case studies taken from environmental, financial, and other applications. They include practical advice on implementation and pointers to relevant software. The 2003 book is suitable as a textbook for students with little background in regression as well as a reference book for statistically oriented scientists such as biostatisticians, econometricians, quantitative social scientists, epidemiologists, with a good working knowledge of regression and the desire to begin using more flexible semiparametric models. Even experts on semiparametric regression should find something new here.

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations PDF Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327

Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Nonlinear Time Series

Nonlinear Time Series PDF Author: Jianqing Fan
Publisher: Springer Science & Business Media
ISBN: 0387693955
Category : Mathematics
Languages : en
Pages : 565

Book Description
This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.

Statistical Foundations of Data Science

Statistical Foundations of Data Science PDF Author: Jianqing Fan
Publisher: CRC Press
ISBN: 0429527616
Category : Mathematics
Languages : en
Pages : 942

Book Description
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.

Statistical Learning with Sparsity

Statistical Learning with Sparsity PDF Author: Trevor Hastie
Publisher: CRC Press
ISBN: 1498712177
Category : Business & Economics
Languages : en
Pages : 354

Book Description
Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl

Advances in Econometrics

Advances in Econometrics PDF Author: Werner Hildenbrand
Publisher: Cambridge University Press
ISBN: 9780521312677
Category : Business & Economics
Languages : en
Pages : 316

Book Description
This volume includes papers delivered at the Fourth World Congress of the Econometric Society. It will interest economic theorists and econometricians working in universities, government, and business and financial institutions.

Data Mining Applications in Engineering and Medicine

Data Mining Applications in Engineering and Medicine PDF Author: Adem Karahoca
Publisher: BoD – Books on Demand
ISBN: 9535107208
Category : Computers
Languages : en
Pages : 340

Book Description
Data Mining Applications in Engineering and Medicine targets to help data miners who wish to apply different data mining techniques. Data mining generally covers areas of statistics, machine learning, data management and databases, pattern recognition, artificial intelligence, etc. In this book, most of the areas are covered by describing different applications. This is why you will find here why and how Data Mining can also be applied to the improvement of project management. Since Data Mining has been widely used in a medical field, this book contains different chapters reffering to some aspects and importance of its use in the mentioned field: Incorporating Domain Knowledge into Medical Image Mining, Data Mining Techniques in Pharmacovigilance, Electronic Documentation of Clinical Pharmacy Interventions in Hospitals etc. We hope that this book will inspire readers to pursue education and research in this emerging field.

Index Medicus

Index Medicus PDF Author:
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 1896

Book Description
Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.