Handbook of Big Data Analytics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Handbook of Big Data Analytics PDF full book. Access full book title Handbook of Big Data Analytics by Wolfgang Karl Härdle. Download full books in PDF and EPUB format.

Handbook of Big Data Analytics

Handbook of Big Data Analytics PDF Author: Wolfgang Karl Härdle
Publisher: Springer
ISBN: 3319182846
Category : Computers
Languages : en
Pages : 532

Book Description
Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science.

Handbook of Big Data Analytics

Handbook of Big Data Analytics PDF Author: Wolfgang Karl Härdle
Publisher: Springer
ISBN: 3319182846
Category : Computers
Languages : en
Pages : 532

Book Description
Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science.

Inference for Functional Data with Applications

Inference for Functional Data with Applications PDF Author: Lajos Horváth
Publisher: Springer Science & Business Media
ISBN: 1461436559
Category : Mathematics
Languages : en
Pages : 426

Book Description
This book presents recently developed statistical methods and theory required for the application of the tools of functional data analysis to problems arising in geosciences, finance, economics and biology. It is concerned with inference based on second order statistics, especially those related to the functional principal component analysis. While it covers inference for independent and identically distributed functional data, its distinguishing feature is an in depth coverage of dependent functional data structures, including functional time series and spatially indexed functions. Specific inferential problems studied include two sample inference, change point analysis, tests for dependence in data and model residuals and functional prediction. All procedures are described algorithmically, illustrated on simulated and real data sets, and supported by a complete asymptotic theory. The book can be read at two levels. Readers interested primarily in methodology will find detailed descriptions of the methods and examples of their application. Researchers interested also in mathematical foundations will find carefully developed theory. The organization of the chapters makes it easy for the reader to choose an appropriate focus. The book introduces the requisite, and frequently used, Hilbert space formalism in a systematic manner. This will be useful to graduate or advanced undergraduate students seeking a self-contained introduction to the subject. Advanced researchers will find novel asymptotic arguments.

Quantile Regression

Quantile Regression PDF Author: Roger Koenker
Publisher: Cambridge University Press
ISBN: 1139444719
Category : Business & Economics
Languages : en
Pages : 367

Book Description
Quantile regression is gradually emerging as a unified statistical methodology for estimating models of conditional quantile functions. By complementing the exclusive focus of classical least squares regression on the conditional mean, quantile regression offers a systematic strategy for examining how covariates influence the location, scale and shape of the entire response distribution. This monograph is the first comprehensive treatment of the subject, encompassing models that are linear and nonlinear, parametric and nonparametric. The author has devoted more than 25 years of research to this topic. The methods in the analysis are illustrated with a variety of applications from economics, biology, ecology and finance. The treatment will find its core audiences in econometrics, statistics, and applied mathematics in addition to the disciplines cited above.

Recurrent Neural Networks for Short-Term Load Forecasting

Recurrent Neural Networks for Short-Term Load Forecasting PDF Author: Filippo Maria Bianchi
Publisher: Springer
ISBN: 3319703382
Category : Computers
Languages : en
Pages : 74

Book Description
The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series.

Financial Modeling Under Non-Gaussian Distributions

Financial Modeling Under Non-Gaussian Distributions PDF Author: Eric Jondeau
Publisher: Springer Science & Business Media
ISBN: 1846286964
Category : Mathematics
Languages : en
Pages : 541

Book Description
This book examines non-Gaussian distributions. It addresses the causes and consequences of non-normality and time dependency in both asset returns and option prices. The book is written for non-mathematicians who want to model financial market prices so the emphasis throughout is on practice. There are abundant empirical illustrations of the models and techniques described, many of which could be equally applied to other financial time series.

Dynamic Models for Volatility and Heavy Tails

Dynamic Models for Volatility and Heavy Tails PDF Author: Andrew C. Harvey
Publisher: Cambridge University Press
ISBN: 1107328780
Category : Business & Economics
Languages : en
Pages : 281

Book Description
The volatility of financial returns changes over time and, for the last thirty years, Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models have provided the principal means of analyzing, modeling and monitoring such changes. Taking into account that financial returns typically exhibit heavy tails - that is, extreme values can occur from time to time - Andrew Harvey's new book shows how a small but radical change in the way GARCH models are formulated leads to a resolution of many of the theoretical problems inherent in the statistical theory. The approach can also be applied to other aspects of volatility. The more general class of Dynamic Conditional Score models extends to robust modeling of outliers in the levels of time series and to the treatment of time-varying relationships. The statistical theory draws on basic principles of maximum likelihood estimation and, by doing so, leads to an elegant and unified treatment of nonlinear time-series modeling.

Functional and High-Dimensional Statistics and Related Fields

Functional and High-Dimensional Statistics and Related Fields PDF Author: Germán Aneiros
Publisher: Springer Nature
ISBN: 3030477568
Category : Mathematics
Languages : en
Pages : 254

Book Description
This book presents the latest research on the statistical analysis of functional, high-dimensional and other complex data, addressing methodological and computational aspects, as well as real-world applications. It covers topics like classification, confidence bands, density estimation, depth, diagnostic tests, dimension reduction, estimation on manifolds, high- and infinite-dimensional statistics, inference on functional data, networks, operatorial statistics, prediction, regression, robustness, sequential learning, small-ball probability, smoothing, spatial data, testing, and topological object data analysis, and includes applications in automobile engineering, criminology, drawing recognition, economics, environmetrics, medicine, mobile phone data, spectrometrics and urban environments. The book gathers selected, refereed contributions presented at the Fifth International Workshop on Functional and Operatorial Statistics (IWFOS) in Brno, Czech Republic. The workshop was originally to be held on June 24-26, 2020, but had to be postponed as a consequence of the COVID-19 pandemic. Initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008, the IWFOS workshops provide a forum to discuss the latest trends and advances in functional statistics and related fields, and foster the exchange of ideas and international collaboration in the field.

Nonparametric Functional Data Analysis

Nonparametric Functional Data Analysis PDF Author: Frédéric Ferraty
Publisher: Springer Science & Business Media
ISBN: 0387366202
Category : Mathematics
Languages : en
Pages : 260

Book Description
Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied through parameter-free statistical ideas. At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.

Bayesian Theory and Applications

Bayesian Theory and Applications PDF Author: Paul Damien
Publisher: Oxford University Press
ISBN: 0199695601
Category : Mathematics
Languages : en
Pages : 717

Book Description
This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field.

Practical Smoothing

Practical Smoothing PDF Author: Paul H.C. Eilers
Publisher: Cambridge University Press
ISBN: 1108482953
Category : Computers
Languages : en
Pages : 213

Book Description
This user guide presents a popular smoothing tool with practical applications in machine learning, engineering, and statistics.