Dynamic Management Decision and Stochastic Control Processes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Dynamic Management Decision and Stochastic Control Processes PDF full book. Access full book title Dynamic Management Decision and Stochastic Control Processes by Toshio Odanaka. Download full books in PDF and EPUB format.

Dynamic Management Decision and Stochastic Control Processes

Dynamic Management Decision and Stochastic Control Processes PDF Author: Toshio Odanaka
Publisher: World Scientific
ISBN: 9789810200923
Category : Business & Economics
Languages : en
Pages : 240

Book Description
This book treats stochastic control theory and its applications in management. The main numerical techniques necessary for such applications are presented. Several advanced topics leading to optimal processes are dismissed. The book also considers the theory of some stochastic control processes and several applications to illustrate the ideas.

Dynamic Management Decision and Stochastic Control Processes

Dynamic Management Decision and Stochastic Control Processes PDF Author: Toshio Odanaka
Publisher: World Scientific
ISBN: 9789810200923
Category : Business & Economics
Languages : en
Pages : 240

Book Description
This book treats stochastic control theory and its applications in management. The main numerical techniques necessary for such applications are presented. Several advanced topics leading to optimal processes are dismissed. The book also considers the theory of some stochastic control processes and several applications to illustrate the ideas.

Dynamic Management Decision And Stochastic Control Processes

Dynamic Management Decision And Stochastic Control Processes PDF Author: Toshio Odanaka
Publisher: World Scientific
ISBN: 9814507121
Category : Technology & Engineering
Languages : en
Pages : 236

Book Description
This book treats stochastic control theory and its applications in management. The main numerical techniques necessary for such applications are presented. Several advanced topics leading to optimal processes are dismissed. The book also considers the theory of some stochastic control processes and several applications to illustrate the ideas.

Controlled Markov Processes and Viscosity Solutions

Controlled Markov Processes and Viscosity Solutions PDF Author: Wendell H. Fleming
Publisher: Springer Science & Business Media
ISBN: 0387310711
Category : Mathematics
Languages : en
Pages : 436

Book Description
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.

Stochastic Systems

Stochastic Systems PDF Author: P. R. Kumar
Publisher: SIAM
ISBN: 1611974259
Category : Mathematics
Languages : en
Pages : 371

Book Description
Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.

Stochastic Dynamic Programming and the Control of Queueing Systems

Stochastic Dynamic Programming and the Control of Queueing Systems PDF Author: Linn I. Sennott
Publisher: John Wiley & Sons
ISBN: 9780471161202
Category : Mathematics
Languages : en
Pages : 360

Book Description
Eine Zusammenstellung der Grundlagen der stochastischen dynamischen Programmierung (auch als Markov-Entscheidungsprozeß oder Markov-Ketten bekannt), deren Schwerpunkt auf der Anwendung der Queueing-Theorie liegt. Theoretische und programmtechnische Aspekte werden sinnvoll verknüpft; insgesamt neun numerische Programme zur Queueing-Steuerung werden im Text ausführlich diskutiert. Ergänzendes Material kann vom zugehörigen ftp-Server abgerufen werden. (12/98)

The Elements of Joint Learning and Optimization in Operations Management

The Elements of Joint Learning and Optimization in Operations Management PDF Author: Xi Chen
Publisher: Springer Nature
ISBN: 3031019261
Category : Business & Economics
Languages : en
Pages : 444

Book Description
This book examines recent developments in Operations Management, and focuses on four major application areas: dynamic pricing, assortment optimization, supply chain and inventory management, and healthcare operations. Data-driven optimization in which real-time input of data is being used to simultaneously learn the (true) underlying model of a system and optimize its performance, is becoming increasingly important in the last few years, especially with the rise of Big Data.

Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott

Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott PDF Author: Samuel N Cohen
Publisher: World Scientific
ISBN: 9814483915
Category : Mathematics
Languages : en
Pages : 605

Book Description
This book consists of a series of new, peer-reviewed papers in stochastic processes, analysis, filtering and control, with particular emphasis on mathematical finance, actuarial science and engineering. Paper contributors include colleagues, collaborators and former students of Robert Elliott, many of whom are world-leading experts and have made fundamental and significant contributions to these areas.This book provides new important insights and results by eminent researchers in the considered areas, which will be of interest to researchers and practitioners. The topics considered will be diverse in applications, and will provide contemporary approaches to the problems considered. The areas considered are rapidly evolving. This volume will contribute to their development, and present the current state-of-the-art stochastic processes, analysis, filtering and control.Contributing authors include: H Albrecher, T Bielecki, F Dufour, M Jeanblanc, I Karatzas, H-H Kuo, A Melnikov, E Platen, G Yin, Q Zhang, C Chiarella, W Fleming, D Madan, R Mamon, J Yan, V Krishnamurthy.

Handbook of Markov Decision Processes

Handbook of Markov Decision Processes PDF Author: Eugene A. Feinberg
Publisher: Springer Science & Business Media
ISBN: 1461508053
Category : Business & Economics
Languages : en
Pages : 560

Book Description
Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a "good" control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation.

Discrete–Time Stochastic Control and Dynamic Potential Games

Discrete–Time Stochastic Control and Dynamic Potential Games PDF Author: David González-Sánchez
Publisher: Springer Science & Business Media
ISBN: 331901059X
Category : Science
Languages : en
Pages : 81

Book Description
​There are several techniques to study noncooperative dynamic games, such as dynamic programming and the maximum principle (also called the Lagrange method). It turns out, however, that one way to characterize dynamic potential games requires to analyze inverse optimal control problems, and it is here where the Euler equation approach comes in because it is particularly well–suited to solve inverse problems. Despite the importance of dynamic potential games, there is no systematic study about them. This monograph is the first attempt to provide a systematic, self–contained presentation of stochastic dynamic potential games.

IEEE International Conference on Systems Engineering, September 17-19, 1992, International Conference Center, Kobe, Japan

IEEE International Conference on Systems Engineering, September 17-19, 1992, International Conference Center, Kobe, Japan PDF Author:
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 680

Book Description