Author: Martin Treiber
Publisher: Springer Science & Business Media
ISBN: 3642324592
Category : Science
Languages : en
Pages : 505
Book Description
This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.
Traffic Flow Dynamics
Transportation Planning
Author: Michael Patriksson
Publisher: Springer Science & Business Media
ISBN: 0306482207
Category : Business & Economics
Languages : en
Pages : 253
Book Description
This book collects selected presentations of the Meeting of the EURO Working Group on Transportation, which took place at the Department of Ma- ematics at Chalmers University of Technology, Göteborg (or, Gothenburg), Sweden, September 9–11, 1998. [The EURO Working Group on Transpor- tion was founded at the end of the 7th EURO Summer Institute on Urban Traffic Management, which took place in Cetraro, Italy, June 21–July, 1991. There were around 30 founding members of the Working Group, a number which now has grown to around 150. Meetings since then include Paris (1993), Barcelona (1994), and Newcastle (1996). ] About 100 participants were present, enjoying healthy rain and a memorable conference dinner in the Feskekôrka. The total number of presentations at the conference was about 60, coming from quite diverse areas within the field of operations research in transportation, and covering all modes of transport: Deterministic traffic equilibrium models (6 papers) Stochastic traffic equilibrium models (5 papers) Combined traffic models (3 papers) Dynamic traffic models (7 papers) Simulation models (4 papers) Origin–destination matrix estimation (2 papers) Urban public transport models (8 papers) Aircraft scheduling (1 paper) Ship routing (2 papers) Railway planning and scheduling (6 papers) Vehicle routing (3 papers) Traffic management (3 papers) Signal control models (3 papers) Transportation systems analysis (5 papers) ix x TRANSPORTATION PLANNING Among these papers, 14 were eventually selected to be included in this volume.
Publisher: Springer Science & Business Media
ISBN: 0306482207
Category : Business & Economics
Languages : en
Pages : 253
Book Description
This book collects selected presentations of the Meeting of the EURO Working Group on Transportation, which took place at the Department of Ma- ematics at Chalmers University of Technology, Göteborg (or, Gothenburg), Sweden, September 9–11, 1998. [The EURO Working Group on Transpor- tion was founded at the end of the 7th EURO Summer Institute on Urban Traffic Management, which took place in Cetraro, Italy, June 21–July, 1991. There were around 30 founding members of the Working Group, a number which now has grown to around 150. Meetings since then include Paris (1993), Barcelona (1994), and Newcastle (1996). ] About 100 participants were present, enjoying healthy rain and a memorable conference dinner in the Feskekôrka. The total number of presentations at the conference was about 60, coming from quite diverse areas within the field of operations research in transportation, and covering all modes of transport: Deterministic traffic equilibrium models (6 papers) Stochastic traffic equilibrium models (5 papers) Combined traffic models (3 papers) Dynamic traffic models (7 papers) Simulation models (4 papers) Origin–destination matrix estimation (2 papers) Urban public transport models (8 papers) Aircraft scheduling (1 paper) Ship routing (2 papers) Railway planning and scheduling (6 papers) Vehicle routing (3 papers) Traffic management (3 papers) Signal control models (3 papers) Transportation systems analysis (5 papers) ix x TRANSPORTATION PLANNING Among these papers, 14 were eventually selected to be included in this volume.
Models for Vehicular Traffic on Networks
Author: Mauro Garavello
Publisher:
ISBN: 9781601330192
Category : Conservation laws (Mathematics)
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9781601330192
Category : Conservation laws (Mathematics)
Languages : en
Pages : 0
Book Description
Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications
Author: Massimiliano Daniele Rosini
Publisher: Springer
ISBN: 3319001558
Category : Technology & Engineering
Languages : en
Pages : 244
Book Description
This monograph presents a systematic treatment of the theory for hyperbolic conservation laws and their applications to vehicular traffics and crowd dynamics. In the first part of the book, the author presents very basic considerations and gradually introduces the mathematical tools necessary to describe and understand the mathematical models developed in the following parts focusing on vehicular and pedestrian traffic. The book is a self-contained valuable resource for advanced courses in mathematical modeling, physics and civil engineering. A number of examples and figures facilitate a better understanding of the underlying concepts and motivations for the students. Important new techniques are presented, in particular the wave front tracking algorithm, the operator splitting approach, the non-classical theory of conservation laws and the constrained problems. This book is the first to present a comprehensive account of these fundamental new mathematical advances.
Publisher: Springer
ISBN: 3319001558
Category : Technology & Engineering
Languages : en
Pages : 244
Book Description
This monograph presents a systematic treatment of the theory for hyperbolic conservation laws and their applications to vehicular traffics and crowd dynamics. In the first part of the book, the author presents very basic considerations and gradually introduces the mathematical tools necessary to describe and understand the mathematical models developed in the following parts focusing on vehicular and pedestrian traffic. The book is a self-contained valuable resource for advanced courses in mathematical modeling, physics and civil engineering. A number of examples and figures facilitate a better understanding of the underlying concepts and motivations for the students. Important new techniques are presented, in particular the wave front tracking algorithm, the operator splitting approach, the non-classical theory of conservation laws and the constrained problems. This book is the first to present a comprehensive account of these fundamental new mathematical advances.
Traffic and Granular Flow ’99
Author: D. Helbing
Publisher: Springer Science & Business Media
ISBN: 3642597513
Category : Mathematics
Languages : en
Pages : 532
Book Description
"Are there common phenomena and laws in the dynamic behavior of granular materials, traffic, and socio-economic systems?" The answers given at the international workshop "Traffic and Granular Flow '99" are presented in this volume. From a physical standpoint, all these systems can be treated as (self)-driven many-particle systems with strong fluctuations, showing multistability, phase transitions, non-linear waves, etc. The great interest in these systems is due to several unexpected new discoveries and their practical relevance for solving some fundamental problems of today's societies. This includes intelligent measures for traffic flow optimization and methods from "econophysics" for stabilizing (stock) markets.
Publisher: Springer Science & Business Media
ISBN: 3642597513
Category : Mathematics
Languages : en
Pages : 532
Book Description
"Are there common phenomena and laws in the dynamic behavior of granular materials, traffic, and socio-economic systems?" The answers given at the international workshop "Traffic and Granular Flow '99" are presented in this volume. From a physical standpoint, all these systems can be treated as (self)-driven many-particle systems with strong fluctuations, showing multistability, phase transitions, non-linear waves, etc. The great interest in these systems is due to several unexpected new discoveries and their practical relevance for solving some fundamental problems of today's societies. This includes intelligent measures for traffic flow optimization and methods from "econophysics" for stabilizing (stock) markets.
Fundamentals of Traffic Simulation
Author: Jaume Barceló
Publisher: Springer Science & Business Media
ISBN: 1441961429
Category : Business & Economics
Languages : en
Pages : 450
Book Description
The increasing power of computer technologies, the evolution of software en- neering and the advent of the intelligent transport systems has prompted traf c simulation to become one of the most used approaches for traf c analysis in s- port of the design and evaluation of traf c systems. The ability of traf c simulation to emulate the time variability of traf c phenomena makes it a unique tool for capturing the complexity of traf c systems. In recent years, traf c simulation – and namely microscopic traf c simulation – has moved from the academic to the professional world. A wide variety of traf- c simulation software is currently available on the market and it is utilized by thousands of users, consultants, researchers and public agencies. Microscopic traf c simulation based on the emulation of traf c ows from the dynamics of individual vehicles is becoming one the most attractive approaches. However, traf c simulation still lacks a uni ed treatment. Dozens of papers on theory and applications are published in scienti c journals every year. A search of simulation-related papers and workshops through the proceedings of the last annual TRB meetings would support this assertion, as would a review of the minutes from speci cally dedicated meetings such as the International Symposiums on Traf c Simulation (Yokohama, 2002; Lausanne, 2006; Brisbane, 2008) or the International Workshops on Traf c Modeling and Simulation (Tucson, 2001; Barcelona, 2003; Sedona, 2005; Graz 2008). Yet, the only comprehensive treatment of the subject to be found so far is in the user’s manuals of various software products.
Publisher: Springer Science & Business Media
ISBN: 1441961429
Category : Business & Economics
Languages : en
Pages : 450
Book Description
The increasing power of computer technologies, the evolution of software en- neering and the advent of the intelligent transport systems has prompted traf c simulation to become one of the most used approaches for traf c analysis in s- port of the design and evaluation of traf c systems. The ability of traf c simulation to emulate the time variability of traf c phenomena makes it a unique tool for capturing the complexity of traf c systems. In recent years, traf c simulation – and namely microscopic traf c simulation – has moved from the academic to the professional world. A wide variety of traf- c simulation software is currently available on the market and it is utilized by thousands of users, consultants, researchers and public agencies. Microscopic traf c simulation based on the emulation of traf c ows from the dynamics of individual vehicles is becoming one the most attractive approaches. However, traf c simulation still lacks a uni ed treatment. Dozens of papers on theory and applications are published in scienti c journals every year. A search of simulation-related papers and workshops through the proceedings of the last annual TRB meetings would support this assertion, as would a review of the minutes from speci cally dedicated meetings such as the International Symposiums on Traf c Simulation (Yokohama, 2002; Lausanne, 2006; Brisbane, 2008) or the International Workshops on Traf c Modeling and Simulation (Tucson, 2001; Barcelona, 2003; Sedona, 2005; Graz 2008). Yet, the only comprehensive treatment of the subject to be found so far is in the user’s manuals of various software products.
Traffic and Granular Flow ' 07
Author: Cécile Appert-Rolland
Publisher: Springer Science & Business Media
ISBN: 3540770747
Category : Mathematics
Languages : en
Pages : 758
Book Description
Covers several research fields dealing with transport. This work covers three main topics including road traffic, granular matter, and biological transport. It considers different points of views including modelling, simulations, experiments, and phenomenological observations.
Publisher: Springer Science & Business Media
ISBN: 3540770747
Category : Mathematics
Languages : en
Pages : 758
Book Description
Covers several research fields dealing with transport. This work covers three main topics including road traffic, granular matter, and biological transport. It considers different points of views including modelling, simulations, experiments, and phenomenological observations.
An Introduction to Traffic Flow Theory
Author: Lily Elefteriadou
Publisher: Springer Science & Business Media
ISBN: 1461484359
Category : Mathematics
Languages : en
Pages : 262
Book Description
This text provides a comprehensive and concise treatment of the topic of traffic flow theory and includes several topics relevant to today’s highway transportation system. It provides the fundamental principles of traffic flow theory as well as applications of those principles for evaluating specific types of facilities (freeways, intersections, etc.). Newer concepts of Intelligent transportation systems (ITS) and their potential impact on traffic flow are discussed. State-of-the-art in traffic flow research and microscopic traffic analysis and traffic simulation have significantly advanced and are also discussed in this text. Real world examples and useful problem sets complement each chapter. This textbook is meant for use in advanced undergraduate/graduate level courses in traffic flow theory with prerequisites including two semesters of calculus, statistics, and an introductory course in transportation. The text would also be of interest to transportation professionals as a refresher in traffic flow theory, or as a reference. Students and engineers of diverse backgrounds will find this text accessible and applicable to today’s traffic issues.
Publisher: Springer Science & Business Media
ISBN: 1461484359
Category : Mathematics
Languages : en
Pages : 262
Book Description
This text provides a comprehensive and concise treatment of the topic of traffic flow theory and includes several topics relevant to today’s highway transportation system. It provides the fundamental principles of traffic flow theory as well as applications of those principles for evaluating specific types of facilities (freeways, intersections, etc.). Newer concepts of Intelligent transportation systems (ITS) and their potential impact on traffic flow are discussed. State-of-the-art in traffic flow research and microscopic traffic analysis and traffic simulation have significantly advanced and are also discussed in this text. Real world examples and useful problem sets complement each chapter. This textbook is meant for use in advanced undergraduate/graduate level courses in traffic flow theory with prerequisites including two semesters of calculus, statistics, and an introductory course in transportation. The text would also be of interest to transportation professionals as a refresher in traffic flow theory, or as a reference. Students and engineers of diverse backgrounds will find this text accessible and applicable to today’s traffic issues.
Introduction to Modern Traffic Flow Theory and Control
Author: Boris S. Kerner
Publisher: Springer Science & Business Media
ISBN: 3642026052
Category : Technology & Engineering
Languages : en
Pages : 271
Book Description
The understanding of empirical traf?c congestion occurring on unsignalized mul- lane highways and freeways is a key for effective traf?c management, control, or- nization, and other applications of transportation engineering. However, the traf?c ?ow theories and models that dominate up to now in transportation research journals and teaching programs of most universities cannot explain either traf?c breakdown or most features of the resulting congested patterns. These theories are also the - sis of most dynamic traf?c assignment models and freeway traf?c control methods, which therefore are not consistent with features of real traf?c. For this reason, the author introduced an alternative traf?c ?ow theory called three-phase traf?c theory, which can predict and explain the empirical spatiot- poral features of traf?c breakdown and the resulting traf?c congestion. A previous book “The Physics of Traf?c” (Springer, Berlin, 2004) presented a discussion of the empirical spatiotemporal features of congested traf?c patterns and of three-phase traf?c theory as well as their engineering applications. Rather than a comprehensive analysis of empirical and theoretical results in the ?eld, the present book includes no more empirical and theoretical results than are necessary for the understanding of vehicular traf?c on unsignalized multi-lane roads. The main objectives of the book are to present an “elementary” traf?c ?ow theory and control methods as well as to show links between three-phase traf?c t- ory and earlier traf?c ?ow theories. The need for such a book follows from many commentsofcolleaguesmadeafterpublicationofthebook“ThePhysicsofTraf?c”.
Publisher: Springer Science & Business Media
ISBN: 3642026052
Category : Technology & Engineering
Languages : en
Pages : 271
Book Description
The understanding of empirical traf?c congestion occurring on unsignalized mul- lane highways and freeways is a key for effective traf?c management, control, or- nization, and other applications of transportation engineering. However, the traf?c ?ow theories and models that dominate up to now in transportation research journals and teaching programs of most universities cannot explain either traf?c breakdown or most features of the resulting congested patterns. These theories are also the - sis of most dynamic traf?c assignment models and freeway traf?c control methods, which therefore are not consistent with features of real traf?c. For this reason, the author introduced an alternative traf?c ?ow theory called three-phase traf?c theory, which can predict and explain the empirical spatiot- poral features of traf?c breakdown and the resulting traf?c congestion. A previous book “The Physics of Traf?c” (Springer, Berlin, 2004) presented a discussion of the empirical spatiotemporal features of congested traf?c patterns and of three-phase traf?c theory as well as their engineering applications. Rather than a comprehensive analysis of empirical and theoretical results in the ?eld, the present book includes no more empirical and theoretical results than are necessary for the understanding of vehicular traf?c on unsignalized multi-lane roads. The main objectives of the book are to present an “elementary” traf?c ?ow theory and control methods as well as to show links between three-phase traf?c t- ory and earlier traf?c ?ow theories. The need for such a book follows from many commentsofcolleaguesmadeafterpublicationofthebook“ThePhysicsofTraf?c”.
Traffic Flow Dynamics
Author: Martin Treiber
Publisher: Springer Science & Business Media
ISBN: 3642324606
Category : Science
Languages : en
Pages : 505
Book Description
This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.
Publisher: Springer Science & Business Media
ISBN: 3642324606
Category : Science
Languages : en
Pages : 505
Book Description
This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.