Convex Optimization PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Convex Optimization PDF full book. Access full book title Convex Optimization by Stephen P. Boyd. Download full books in PDF and EPUB format.

Convex Optimization

Convex Optimization PDF Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744

Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Convex Optimization

Convex Optimization PDF Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744

Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Approximation and Optimization of Discrete and Differential Inclusions

Approximation and Optimization of Discrete and Differential Inclusions PDF Author: Elimhan N Mahmudov
Publisher: Elsevier
ISBN: 0123884284
Category : Mathematics
Languages : en
Pages : 396

Book Description
Optimal control theory has numerous applications in both science and engineering. This book presents basic concepts and principles of mathematical programming in terms of set-valued analysis and develops a comprehensive optimality theory of problems described by ordinary and partial differential inclusions. In addition to including well-recognized results of variational analysis and optimization, the book includes a number of new and important ones Includes practical examples

Duality and Approximation Methods for Cooperative Optimization and Control

Duality and Approximation Methods for Cooperative Optimization and Control PDF Author: Mathias Bürger
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832536248
Category : Mathematics
Languages : en
Pages : 166

Book Description
This thesis investigates the role of duality and the use of approximation methods in cooperative optimization and control. Concerning cooperative optimization, a general algorithm for convex optimization in networks with asynchronous communication is presented. Based on the idea of polyhedral approximations, a family of distributed algorithms is developed to solve a variety of distributed decision problems, ranging from semi-definite and robust optimization problems up to distributed model predictive control. Optimization theory, and in particular duality theory, are shown to be central elements also in cooperative control. This thesis establishes an intimate relation between passivity-based cooperative control and network optimization theory. The presented results provide a complete duality theory for passivity-based cooperative control and lead the way to novel analysis tools for complex dynamic phenomena. In this way, this thesis presents theoretical insights and algorithmic approaches for cooperative optimization and control, and emphasizes the role of convexity and duality in this field.

Linear Optimization and Approximation

Linear Optimization and Approximation PDF Author: K. Glashoff
Publisher: Springer Science & Business Media
ISBN: 1461211425
Category : Science
Languages : en
Pages : 209

Book Description
A linear optimization problem is the task of minimizing a linear real-valued function of finitely many variables subject to linear con straints; in general there may be infinitely many constraints. This book is devoted to such problems. Their mathematical properties are investi gated and algorithms for their computational solution are presented. Applications are discussed in detail. Linear optimization problems are encountered in many areas of appli cations. They have therefore been subject to mathematical analysis for a long time. We mention here only two classical topics from this area: the so-called uniform approximation of functions which was used as a mathematical tool by Chebyshev in 1853 when he set out to design a crane, and the theory of systems of linear inequalities which has already been studied by Fourier in 1823. We will not treat the historical development of the theory of linear optimization in detail. However, we point out that the decisive break through occurred in the middle of this century. It was urged on by the need to solve complicated decision problems where the optimal deployment of military and civilian resources had to be determined. The availability of electronic computers also played an important role. The principal computational scheme for the solution of linear optimization problems, the simplex algorithm, was established by Dantzig about 1950. In addi tion, the fundamental theorems on such problems were rapidly developed, based on earlier published results on the properties of systems of linear inequalities.

Iterative Methods in Combinatorial Optimization

Iterative Methods in Combinatorial Optimization PDF Author: Lap Chi Lau
Publisher: Cambridge University Press
ISBN: 1139499394
Category : Computers
Languages : en
Pages : 255

Book Description
With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.

Multiple Criteria Optimization

Multiple Criteria Optimization PDF Author: Xavier Gandibleux
Publisher: Springer Science & Business Media
ISBN: 0306481073
Category : Business & Economics
Languages : en
Pages : 515

Book Description
The generalized area of multiple criteria decision making (MCDM) can be defined as the body of methods and procedures by which the concern for multiple conflicting criteria can be formally incorporated into the analytical process. MCDM consists mostly of two branches, multiple criteria optimization and multi-criteria decision analysis (MCDA). While MCDA is typically concerned with multiple criteria problems that have a small number of alternatives often in an environment of uncertainty (location of an airport, type of drug rehabilitation program), multiple criteria optimization is typically directed at problems formulated within a mathematical programming framework, but with a stack of objectives instead of just one (river basin management, engineering component design, product distribution). It is about the most modern treatment of multiple criteria optimization that this book is concerned. I look at this book as a nicely organized and well-rounded presentation of what I view as ”new wave” topics in multiple criteria optimization. Looking back to the origins of MCDM, most people agree that it was not until about the early 1970s that multiple criteria optimization c- gealed as a field. At this time, and for about the following fifteen years, the focus was on theories of multiple objective linear programming that subsume conventional (single criterion) linear programming, algorithms for characterizing the efficient set, theoretical vector-maximum dev- opments, and interactive procedures.

The Design of Approximation Algorithms

The Design of Approximation Algorithms PDF Author: David P. Williamson
Publisher: Cambridge University Press
ISBN: 9780521195270
Category : Computers
Languages : en
Pages : 518

Book Description
Discrete optimization problems are everywhere, from traditional operations research planning problems, such as scheduling, facility location, and network design; to computer science problems in databases; to advertising issues in viral marketing. Yet most such problems are NP-hard. Thus unless P = NP, there are no efficient algorithms to find optimal solutions to such problems. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first part of the book is devoted to a single algorithmic technique, which is then applied to several different problems. The second part revisits the techniques but offers more sophisticated treatments of them. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithms courses, the book will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems.

Convex Optimization Algorithms

Convex Optimization Algorithms PDF Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 1886529280
Category : Mathematics
Languages : en
Pages : 576

Book Description
This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.

The Design of Competitive Online Algorithms Via a Primal-Dual Approach

The Design of Competitive Online Algorithms Via a Primal-Dual Approach PDF Author: Niv Buchbinder
Publisher: Now Publishers Inc
ISBN: 160198216X
Category : Computers
Languages : en
Pages : 190

Book Description
Extends the primal-dual method to the setting of online algorithms, and shows its applicability to a wide variety of fundamental problems.

Convex Optimization Theory

Convex Optimization Theory PDF Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 1886529310
Category : Mathematics
Languages : en
Pages : 256

Book Description
An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).