Dual Plasma Synthesis of Functionalized Metal Nanoparticles PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Dual Plasma Synthesis of Functionalized Metal Nanoparticles PDF full book. Access full book title Dual Plasma Synthesis of Functionalized Metal Nanoparticles by Jason Tavares. Download full books in PDF and EPUB format.

Dual Plasma Synthesis of Functionalized Metal Nanoparticles

Dual Plasma Synthesis of Functionalized Metal Nanoparticles PDF Author: Jason Tavares
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Dual Plasma Synthesis of Functionalized Metal Nanoparticles

Dual Plasma Synthesis of Functionalized Metal Nanoparticles PDF Author: Jason Tavares
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Dual-plasma Synthesis of Coated Metal Nanoparticles with Controlled Surface Properties

Dual-plasma Synthesis of Coated Metal Nanoparticles with Controlled Surface Properties PDF Author: Edward J. Swanson
Publisher:
ISBN:
Category : Metal clusters
Languages : en
Pages : 52

Book Description


Synthesis of Organic Layer-coated Metal Nanoparticles in a Dual-plasma Process

Synthesis of Organic Layer-coated Metal Nanoparticles in a Dual-plasma Process PDF Author: Cao Qin
Publisher:
ISBN:
Category : Metal clusters
Languages : en
Pages : 226

Book Description
"The effects of operating conditions such as reactor pressure and inert gas flow rate on the average size of the produced bare copper nanoparticles were studied. It was demonstrated that the metal nanoparticle size tends to decrease with decreasing reactor pressure, while inert gas flow rate has little influence on the mean nanoparticle size." --

Plasma Synthesis and Self-Assembly of Magnetic Nanoparticles

Plasma Synthesis and Self-Assembly of Magnetic Nanoparticles PDF Author: Sebastian Ekeroth
Publisher: Linköping University Electronic Press
ISBN: 9176850099
Category :
Languages : en
Pages : 58

Book Description
Nanomaterials are important tools for enabling technological progress as they can provide dramatically different properties as compared to the bulk counterparts. The field of nanoparticles is one of the most investigated within nanomaterials, thanks to the existing, relatively simple, means of manufacturing. In this thesis, high-power pulsed hollow cathode sputtering is used to nucleate and grow magnetic nanoparticles in a plasma. This sputtering technique provides a high degree of ionization of the sputtered material, which has previously been shown to aid in the growth of the nanoparticles. The magnetic properties of the particles are utilized and makes it possible for the grown particles to act as building blocks for self-assembly into more sophisticated nano structures, particularly when an external magnetic field is applied. These structures created are termed “nanowires” or “nanotrusses”, depending on the level of branching and inter-linking that occurs. Several different elements have been investigated in this thesis. In a novel approach, it is shown how nanoparticles with more advanced structures, and containing material from two hollow cathodes, can be fabricated using high-power pulses. The dual-element particles are achieved by using two distinct and individual elemental cathodes, and a pulse process that allows tuning of individual pulses separately to them. Nanoparticles grown and investigated are Fe, Ni, Pt, Fe-Ni and Ni-Pt. Alternatively, the addition of oxygen to the process allows the formation of oxide or hybrid metal oxide – metal particles. For all nanoparticles containing several elements, it is demonstrated that the stoichiometry can be easily varied, either by the amount of reactive gas let into the process or by tuning the amount of sputtered material through adjusting the electric power supplied to the different cathodes. One aim of the presented work is to find a suitable material for the use as a catalyst in the production of H2 gas through the process of water splitting. H2 is a good candidate to replace fossil fuels as an energy carrier. However, rare elements (such as Ir or Pt) needs to be used as the catalyst, otherwise a high overpotential is required for the splitting to occur, leading to a low efficiency. This work demonstrates a possible route to avoid this, by using nanomaterials to increase the surface-to-volume ratio, as well as optimizing the elemental ratio between different materials to lower the amount of noble elements required.

Plasma based Synthesis and Modification of Nanomaterials

Plasma based Synthesis and Modification of Nanomaterials PDF Author: Pawel Pohl
Publisher: MDPI
ISBN: 3039213954
Category : Medical
Languages : en
Pages : 160

Book Description
This book, entitled “Plasma-Based Synthesis and Modification of Nanomaterials” is a collection of nine original research articles devoted to the application of different atmospheric pressure (APPs) and low-pressure (LPPs) plasmas for the synthesis or modification of various nanomaterials (NMs) of exceptional properties. These articles also show the structural and morphological characterization of the synthesized NMs and their further interesting and unique applications in different areas of science and technology. The readers interested in the capabilities of plasma-based treatments will quickly be convinced that APPs and LPPs enable one to efficiently synthesize or modify differentiated NMs using a minimal number of operations. Indeed, the presented procedures are eco-friendly and usually involve single-step processes, thus considerably lowering labor investment and costs. As a result, the production of new NMs and their functionalization is more straightforward and can be carried out on a much larger scale compared to other methods and procedures involving complex chemical treatments and processes. The size and morphology, as well as the structural and optical properties of the resulting NMs are tunable and tailorable. In addition to the desirable and reproducible physical dimensions, crystallinity, functionality, and spectral properties of the resultant NMs, the NMs fabricated and/or modified with the aid of APPs are commonly ready-to-use prior to their specific applications, without any initial pre-treatments.

Nanofluids for Heat and Mass Transfer

Nanofluids for Heat and Mass Transfer PDF Author: Bharat Bhanvase
Publisher: Academic Press
ISBN: 0128219475
Category : Technology & Engineering
Languages : en
Pages : 460

Book Description
Nanofluids for Heat and Mass Transfer: Fundamentals, Sustainable Manufacturing and Applications presents the latest on the performance of nanofluids in heat transfer systems. Dr. Bharat Bhanvase investigates characterization techniques and the various properties of nanofluids to analyze their efficiency and abilities in a variety of settings. The book moves through a presentation of the fundamentals of synthesis and nanofluid characterization to various properties and applications. Aimed at academics and researchers focused on heat transfer in energy and engineering disciplines, this book considers sustainable manufacturing processes within newer energy harvesting technologies to serve as an authoritative and well-rounded reference. Highlights the major elements of nanofluids as an energy harvesting fluid, including their preparation methods, characterization techniques, properties and applications Includes valuable findings and insights from numerical and computational studies Provides nanofluid researchers with research inspiration to discover new applications and further develop technologies

Plasma Processing of Nanomaterials

Plasma Processing of Nanomaterials PDF Author: R. Mohan Sankaran
Publisher: CRC Press
ISBN: 1351832948
Category : Science
Languages : en
Pages : 433

Book Description
We are at a critical evolutionary juncture in the research and development of low-temperature plasmas, which have become essential to synthesizing and processing vital nanoscale materials. More and more industries are increasingly dependent on plasma technology to develop integrated small-scale devices, but physical limits to growth, and other challenges, threaten progress. Plasma Processing of Nanomaterials is an in-depth guide to the art and science of plasma-based chemical processes used to synthesize, process, and modify various classes of nanoscale materials such as nanoparticles, carbon nanotubes, and semiconductor nanowires. Plasma technology enables a wide range of academic and industrial applications in fields including electronics, textiles, automotives, aerospace, and biomedical. A prime example is the semiconductor industry, in which engineers revolutionized microelectronics by using plasmas to deposit and etch thin films and fabricate integrated circuits. An overview of progress and future potential in plasma processing, this reference illustrates key experimental and theoretical aspects by presenting practical examples of: Nanoscale etching/deposition of thin films Catalytic growth of carbon nanotubes and semiconductor nanowires Silicon nanoparticle synthesis Functionalization of carbon nanotubes Self-organized nanostructures Significant advances are expected in nanoelectronics, photovoltaics, and other emerging fields as plasma technology is further optimized to improve the implementation of nanomaterials with well-defined size, shape, and composition. Moving away from the usual focus on wet techniques embraced in chemistry and physics, the author sheds light on pivotal breakthroughs being made by the smaller plasma community. Written for a diverse audience working in fields ranging from nanoelectronics and energy sensors to catalysis and nanomedicine, this resource will help readers improve development and application of nanomaterials in their own work. About the Author: R. Mohan Sankaran received the American Vacuum Society’s 2011 Peter Mark Memorial Award for his outstanding contributions to tandem plasma synthesis.

Plasma for Energy and Catalytic Nanomaterials

Plasma for Energy and Catalytic Nanomaterials PDF Author: Lanbo Di
Publisher: MDPI
ISBN: 3039286544
Category : Science
Languages : en
Pages : 234

Book Description
The Special Issue “Plasma for Energy and Catalytic Nanomaterials” highlights the recent progress and advancements in the synthesis and applications of energy and catalytic nanomaterials by plasma. Compared with conventional preparation methods, plasma provides a fast, facile, and environmentally friendly method for synthesizing highly efficient nanomaterials. The synthesized nanomaterials generally show enhanced metal–support interactions, small-sized metal nanoparticles, specific metal structures, and abundant oxygen vacancies. The plasma method allows thermodynamically and dynamically difficult reactions to proceed at low temperatures due to the activation of energetic electrons. Despite the growing interest in plasma for energy and catalytic nanomaterials, the synthesis mechanisms of nanomaterials using plasma still remain obscure due to the complicated physical and chemical reactions that occur during plasma preparation. The Guest Editors and the MDPI staff are therefore pleased to offer this Special Issue to interested reader, including graduate and Ph.D. students, postdoctoral researchers, and the entire community interested in the field of nanomaterials. We share the conviction that the Issue can serve as a useful tool for updating the literature and to aid with the conception of new production and/or research programs. Further dedicated R&D advances are possible based on new instruments and materials under development.

Synthesis, Functionalization and Characterization of Dual Mode Nanoparticles for Biomedical Applications

Synthesis, Functionalization and Characterization of Dual Mode Nanoparticles for Biomedical Applications PDF Author: Farah Nazih Radwan
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages :

Book Description
Three different approaches were used to prepare dual mode nanoparticles using a previously described reverse micelle technique. Superparamagnetic Fe@FeOx core shell nanoparticles were chosen to be the magnetic component for all three dual mode systems. In the first type of particles, 2- amino-1,3- propane diol (APD) was used as a functionalization ligand to stabilize the surface of the particles and its functional amino group also provided a binding site for the attachment of a fluorescent probe. The TEM analysis showed that the APD coated particles have a size range of 8-13 nm while XPS and MALDI measurements confirmed the presence of the APD ligand on the surface of the particles. The VSM data showed that the magnetization of the unfuntionalized particles was 60 emu/g and after functionalization the magnetization became 33 emu/g. The slight reduction magnetization was a result of the organic surface coating of APD. At this point, we realized that attaching a bulky organic fluorescent probe will cause the particles' magnetization to further decrease. Therefore, our attention was directed towards inorganic semiconductors nanoparticles to be used as the optical component of the dual mode particles. The second approach included replacing the FeOx shell around the metallic iron core with a quantum dots shell (QDs). Thioglycerol was used to stabilize the surface of the synthesized CdS particles. The diffraction pattern of the produced particles was in agreement with the reference patterns of both alpha iron and CdS hexagonal crystal lattice, as illustrated by the XRD measurements. The TEM images of the coated particles revealed core shell morphology before the addition of thioglycerol and the particles were aggregated. After thioglycerol was added, the particles became more isolated with an approximate size of 14 nm. Optical measurements of the coated particles showed an emission peak at 670 nm using an absorbance peak of 335 nm. XPS scans verified the presence of CdS shell on the surface of the iron particles. The magnetization of the coated particles was 22 emu/ g, which is lower than that of the APD coated particles. Although, the optical properties of the dual mode system were enhanced, the magnetization was reduced. This leads to our third approach in preparing the dual mode system, we used organometallic Prussian blue compound as our optical probe. Similar to the XRD data of the CdS@Fe nanoparticles, the core consists of metallic iron for PB@Fe nanoparticles. The TEM images showed core shell morphology and approximate size of 11 nm. The attachment of PB ligand on the surface of the particles was verified using XPS and the magnetic data revealed that PB@Fe nanoparticles has the highest magnetization value of 80 emu/ g and it's the highest in comparison to the previous two system. In conclusion, we have taken three approaches to develop magnetic and optical dual mode nanoparticles. Each system has its advantages and limitations. For instance, CdS nanoparticles have the most enhanced optical properties but the lowest magnetization. On the other hand PB@Fe has the highest magnetization saturation but not the optimal optical properties. Future work includes the improvement of both the magnetic and optical properties of these systems.

Silicon Nanocrystals

Silicon Nanocrystals PDF Author: Lorenzo Pavesi
Publisher: John Wiley & Sons
ISBN: 9783527629961
Category : Technology & Engineering
Languages : en
Pages : 648

Book Description
This unique collection of knowledge represents a comprehensive treatment of the fundamental and practical consequences of size reduction in silicon crystals. This clearly structured reference introduces readers to the optical, electrical and thermal properties of silicon nanocrystals that arise from their greatly reduced dimensions. It covers their synthesis and characterization from both chemical and physical viewpoints, including ion implantation, colloidal synthesis and vapor deposition methods. A major part of the text is devoted to applications in microelectronics as well as photonics and nanobiotechnology, making this of great interest to the high-tech industry.