Droplet and Digital Microfluidics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Droplet and Digital Microfluidics PDF full book. Access full book title Droplet and Digital Microfluidics by Sanket Goel. Download full books in PDF and EPUB format.

Droplet and Digital Microfluidics

Droplet and Digital Microfluidics PDF Author: Sanket Goel
Publisher: Elsevier
ISBN: 0443154171
Category : Technology & Engineering
Languages : en
Pages : 276

Book Description
Droplet and Digital Microfluidics: Ideation to Implementation is a detailed introduction to the dynamics of droplet and digital microfluidics, also featuring coverage of new methods and applications. The explosion of applications of microelectromechanical systems (MEMS) in recent years has driven demand for expertise and innovation in fluid flow in the microchannels they contain. In this book, detailed descriptions of methods for biological and chemical applications of microfluidics are provided, along with supporting foundational knowledge. In addition, the principles of droplet and digital microfluidics are explained, along with their different applications and governing physics. New additions to the technological knowledgebase that enable advances in droplet and digital microfluidics include machine learning and exciting future avenues for research. Provides step-by-step fabrication, testing, and characterization instructions in each chapter to support implementation Includes explanations of applications and methods in biological and chemical settings Describes the path to automation of digital and droplet microfluidic platforms

Droplet and Digital Microfluidics

Droplet and Digital Microfluidics PDF Author: Sanket Goel
Publisher: Elsevier
ISBN: 0443154171
Category : Technology & Engineering
Languages : en
Pages : 276

Book Description
Droplet and Digital Microfluidics: Ideation to Implementation is a detailed introduction to the dynamics of droplet and digital microfluidics, also featuring coverage of new methods and applications. The explosion of applications of microelectromechanical systems (MEMS) in recent years has driven demand for expertise and innovation in fluid flow in the microchannels they contain. In this book, detailed descriptions of methods for biological and chemical applications of microfluidics are provided, along with supporting foundational knowledge. In addition, the principles of droplet and digital microfluidics are explained, along with their different applications and governing physics. New additions to the technological knowledgebase that enable advances in droplet and digital microfluidics include machine learning and exciting future avenues for research. Provides step-by-step fabrication, testing, and characterization instructions in each chapter to support implementation Includes explanations of applications and methods in biological and chemical settings Describes the path to automation of digital and droplet microfluidic platforms

Micro-Drops and Digital Microfluidics

Micro-Drops and Digital Microfluidics PDF Author: Jean Berthier
Publisher: Elsevier
ISBN: 0815518358
Category : Technology & Engineering
Languages : en
Pages : 463

Book Description
After spending over 12 years developing new microsystems for biotechnology – especially concerned with the microfluidic aspects of these devices – Jean Berthier is considered a leading authority in the field. Now, following the success of his book, Microfluidics for Biotechnology, Dr. Berthier returns to explain how new miniaturization techniques have dramatically expanded the area of microfluidic applications and microsystems into microdrops and digital microfluidics. Engineers interested in designing more versatile microsystems and students who seek to learn the fundamentals of microfluidics will all appreciate the wide-range of information found within Microdrops and Digital Microfluidics. The most recent developments in digital microfluidics are described in clear detail, with a specific focus on the computational, theoretical and experimental study of microdrops. Over 500 equations and more than 400 illustrations Authoritative reporting on the latest changes in microfluidic science, where microscopic liquid volumes are handled as "microdrops" and separately from "nanodrops" A methodical examination of how liquid microdrops behave in the complex geometries of modern miniaturized systems and interact with different morphological (micro-fabricated, textured) solid substrates A thorough explanation of how capillary forces act on liquid interfaces in contact with micro-fabricated surfaces Analysis of how droplets can be manipulated, handled, or transported using electric fields (electrowetting), acoustic actuation (surface acoustic waves), or by a carrier liquid (microflow) A fresh perspective on the future of microfluidics

Designing Droplet Microfluidic Networks

Designing Droplet Microfluidic Networks PDF Author: Andreas Grimmer
Publisher: Springer
ISBN: 3030207137
Category : Technology & Engineering
Languages : en
Pages : 145

Book Description
This book describes automatic methods for the design of droplet microfluidic networks. The authors discuss simulation and design methods which support the design process of droplet microfluidics in general, as well as design methods for a dedicated droplet routing mechanism, namely passive droplet routing. The methods discussed allow for simulating a microfluidic design on a high-abstraction level, which facilitates early validation of whether a design works as intended, automatically dimensioning a microfluidic design, so that constraints like flow conditions are satisfied, and automatically generating meander designs for the respective needs and fabrication settings. Dedicated methods for passive droplet routing are discussed and allow for designing application-specific architectures for a given set of experiments, as well as generating droplet sequences realizing the respective experiments. Together, these methods provide a comprehensive “toolbox" for designers working on droplet microfluidic networks in general and an integrated design flow for the passive droplet routing mechanism in particular. Provides both a comprehensive “toolbox" for designers working on droplet microfluidic networks in general and an integrated design flow for the passive droplet routing mechanism in particular; Describes for the first time CAD methods for droplet microfluidic networks, along with the first integrated design process; Includes open source implementations, in order to reach the largest possible user group within the domain of microfluidics.

Finger-powered Digital Microfluidics for Micro Droplet Manipulation

Finger-powered Digital Microfluidics for Micro Droplet Manipulation PDF Author: Cheng Peng
Publisher:
ISBN:
Category :
Languages : en
Pages : 201

Book Description
Microfluidic devices that do not require bulky peripheral hardware, such as pumps and external battery/power supplies, are a suitable technology for portable applications in resource-constrained settings, such as point-of-care (POC) diagnosis in developed countries, environmental monitoring, and on-site forensic analysis, etc. The existing portable microfluidic devices are mostly based on microchannel structures, in which the pre-defined channels limit their functional flexibility, rendering them difficult to scale up. Digital microfluidics, on the other hand, can tackle this problem since they deal with discrete droplets individually and can therefore provide more on-demand flexibility and versatility. Most digital microfluidic devices, however, require external electric power sources. We first propose finger-powered digital microfluidic (F-DMF) based on electrowetting on dielectric (EWOD). Instead of requiring an external power supply, our F-DMF uses piezoelectric elements to convert the mechanical energy produced by human fingers into electric voltage pulses for droplet manipulation. The voltage outputs of piezoelectric element mounted in cantilever beam configuration are studied theoretically and experimentally. Using this energy conversion scheme, the basic modes of droplet operations, such as droplet transport, splitting, and merging on EWOD devices are confirmed. The key assay steps involved in glucose detection and immunoassay are also successfully performed using F-DMF-EWOD. Exploiting the same energy conversion scheme, F-DMF based on the electrophoretic transport of discrete droplets (EPD), which has the potential to overcome pinning and surface contamination often encountered in EWOD, is then presented. Successful EPD actuation, however, requires the piezoelectric elements to provide both sufficient charge and voltage pulse duration. These requirements are quantified using numerical models to predict the electrical charges induced on the droplets and the subsequent electrophoretic forces. The transport and merging of aqueous droplets as well as direct manipulation of body fluids is experimentally demonstrated using F-EPD-DMF. Further, a mechanical system and an efficient pin-assignment scheme are explored to facilitate the practical implementation of pre-programmed and functional actuation of droplets in the EPD-based system. For the second part of this thesis, one practical issue in digital microfluidics biochip (DMFB) design is discussed: the droplet routing problem, which largely decides the performance and correctness of the system. The problem is formulated to a multi-agent path finding problem (MAPF) and an approximate algorithm based on Independent Detection (ID) is applied to solve the problem. The modified ID algorithm shows promising performance on selected benchmark problems with medium number of droplets ( 12). Overall, it achieves better timing result (~15% reduction) and total routing length (~50% reduction) with no compromise in fault tolerance (indicated by the total number of used cells), when compared with the previous best known results.

Digital Microfluidic Biochips

Digital Microfluidic Biochips PDF Author: Krishnendu Chakrabarty
Publisher: CRC Press
ISBN: 1420008307
Category : Technology & Engineering
Languages : en
Pages : 228

Book Description
Digital Microfluidic Biochips focuses on the automated design and production of microfluidic-based biochips for large-scale bioassays and safety-critical applications. Bridging areas of electronic design automation with microfluidic biochip research, the authors present a system-level design automation framework that addresses key issues in the design, analysis, and testing of digital microfluidic biochips. The book describes a new generation of microfluidic biochips with more complex designs that offer dynamic reconfigurability, system scalability, system integration, and defect tolerance. Part I describes a unified design methodology that targets design optimization under resource constraints. Part II investigates cost-effective testing techniques for digital microfluidic biochips that include test resource optimization and fault detection while running normal bioassays. Part III focuses on different reconfiguration-based defect tolerance techniques designed to increase the yield and dependability of digital microfluidic biochips. Expanding upon results from ongoing research on CAD for biochips at Duke University, this book presents new design methodologies that address some of the limitations in current full-custom design techniques. Digital Microfluidic Biochips is an essential resource for achieving the integration of microfluidic components in the next generation of system-on-chip and system-in-package designs.

Numerical Simulations of Manipulation of Microparticles by Droplets in Digital Microfluidics

Numerical Simulations of Manipulation of Microparticles by Droplets in Digital Microfluidics PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 230

Book Description
Manipulation of microparticles by droplets is a very useful and important technique for many microfluidics applications. Due to the large specific surface necessary for chemical binding and easy recovery from a dispersion, utilization of nanospheres or microspheres has become more and more popular for different medical, biological, and optical applications. The goal of this research is to understand the mechanism for the manipulation of microparticles by droplets. Dissipative particle dynamics (DPD), which is extensively used to model mesoscale flow phenomena, is applied as the numerical tool for this study. A model for solid microparticles is designed to study the interactions among microparticles, liquid droplets, and solid substrates. A spherical shell is used to represent the microparticle, and the shell surface is packed by dense enough beads to avoid undesired penetration of liquid beads into solid microparticles, conserving the momentum automatically. After that, the interaction between a rigid microparticle and a solid substrate is modeled based on contact mechanics, including adhesion forces, normal forces, and friction forces. After the model for microparticles is built, a baseline case simulating the pickup and transport of a hydrophobic microparticle by a droplet is demonstrated and compared with experimental observations. Then, the flow structures within a droplet containing a hydrophobic microparticle are revealed. With this developed numerical tool, parametric studies are conducted to investigate the effect on the manipulation processes (including pickup, transport, and drop off) of a microparticle by droplet sizes, wetting properties of microparticles, and particle-substrate friction coefficients. The increase of droplet size can speed up the transport of microparticles. However, the increase of particle-substrate friction coefficients can lead to drop-off of a hydrophobic microparticle. The mechanism for the drop-off, or delivery, is analyzed by checking the development of the friction force and driving force on the microparticle during the transport process. The critical velocity, defined as the instantaneous velocity of the microparticle right before the occurrence of delivery, is measured, and it is found that the critical velocity is about same for different sizes of droplets. Based on the numerical results, two different designs, namely passive delivery and active delivery, have been demonstrated to be capable of controlling the location for the delivery of single hydrophobic microparticle without any trap design or external field forces. These numerical results provide a fundamental understanding of interactions among the microparticle, the droplet and the substrate to facilitate the optimal experimental design of digital microfluidic system utilizing microparticles.

Adaptive Cooling of Integrated Circuits Using Digital Microfluidics

Adaptive Cooling of Integrated Circuits Using Digital Microfluidics PDF Author: Philip Y. Paik
Publisher: Artech House Publishers
ISBN:
Category : Science
Languages : en
Pages : 216

Book Description
Thanks to increasing power consumption and component density, localized hot spots are becoming a serious challenge in IC (integrated circuit) chip design - so serious, in fact, that Intel recently had to yank a circuit because it was literally burning. For IC engineers grappling with high power dissipation and thermal issues, new droplet-based cooling techniques using digital microfluidics technology could provide the solution. This definitive guide paves the way, with design and implementation methodologies and prototypes for utilizing this groundbreaking technology. After reviewing cooling principles and current bulk cooling methods, the book brings engineers up to speed on emerging droplet-based architectures. Amply illustrated, this milestone work will prove invaluable in tackling IC heat issues that existing methods can no longer address.

Droplet Microfluidics

Droplet Microfluidics PDF Author: Abraham Lee
Publisher: Royal Society of Chemistry
ISBN: 1788017692
Category : Science
Languages : en
Pages : 315

Book Description
Edited by two leaders, this book has drawn together expertise from around the globe to form a unified, cohesive resource for the droplet microfluidics community. Starting with the basic theory of droplet microfluidics before introducing its use as a tool, the reader is treated to chapters on important techniques, including robust passive and active droplet manipulations and applications such as single cell analysis, which is key for drug discovery. This book is a go-to resource for the community yearning to adopt and promote droplet microfluidics into different applications.

Micro-Drops and Digital Microfluidics

Micro-Drops and Digital Microfluidics PDF Author: Jean Berthier
Publisher: William Andrew
ISBN: 1455728004
Category : Technology & Engineering
Languages : en
Pages : 560

Book Description
In this 2nd edition of Micro-Drops and Digital Microfluidics, Jean Berthier explores the fundamentals and applications of digital microfluidics, enabling engineers and scientists to design this important enabling technology into devices and harness the considerable potential of digital microfluidics in testing and data collection. This book describes the most recent developments in digital microfluidics, with a specific focus on the computational, theoretical and experimental study of microdrops. Unique in its emphasis on digital microfluidics and with diverse applications ranging from drug delivery to point-of-care diagnostic chips, organic synthesis to microreactors, Micro-Drops and Digital Microfluidics meets the needs of audiences across the fields of bioengineering and biotechnology, and electrical and chemical engineering. Authoritative reporting on the latest changes in microfluidic science, where microscopic liquid volumes are handled as ""microdrops"" and separately from ""nanodrops." A methodical examination of how liquid microdrops behave in the complex geometries of modern miniaturized systems and interact with different morphological (micro-fabricated, textured) solid substrates A thorough explanation of how capillary forces act on liquid interfaces in contact with micro-fabricated surfaces Analysis of how droplets can be manipulated, handled, or transported using electric fields (electrowetting), acoustic actuation (surface acoustic waves), or by a carrier liquid (microflow) A fresh perspective on the future of microfluidics

Nanotechnology for Microfluidics

Nanotechnology for Microfluidics PDF Author: Xingyu Jiang
Publisher: John Wiley & Sons
ISBN: 3527345337
Category : Technology & Engineering
Languages : en
Pages : 444

Book Description
The book focuses on microfluidics with applications in nanotechnology. The first part summarizes the recent advances and achievements in the field of microfluidic technology, with emphasize on the the influence of nanotechnology. The second part introduces various applications of microfluidics in nanotechnology, such as drug delivery, tissue engineering and biomedical diagnosis.