Domain Decomposition of a Constructive Solid Geometry Monte Carlo Transport Code PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Domain Decomposition of a Constructive Solid Geometry Monte Carlo Transport Code PDF full book. Access full book title Domain Decomposition of a Constructive Solid Geometry Monte Carlo Transport Code by . Download full books in PDF and EPUB format.

Domain Decomposition of a Constructive Solid Geometry Monte Carlo Transport Code

Domain Decomposition of a Constructive Solid Geometry Monte Carlo Transport Code PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 17

Book Description
Domain decomposition has been implemented in a Constructive Solid Geometry (CSG) Monte Carlo neutron transport code. Previous methods to parallelize a CSG code relied entirely on particle parallelism; but in our approach we distribute the geometry as well as the particles across processors. This enables calculations whose geometric description is larger than what could fit in memory of a single processor, thus it must be distributed across processors. In addition to enabling very large calculations, we show that domain decomposition can speed up calculations compared to particle parallelism alone. We also show results of a calculation of the proposed Laser Inertial-Confinement Fusion-Fission Energy (LIFE) facility, which has 5.6 million CSG parts.

Domain Decomposition of a Constructive Solid Geometry Monte Carlo Transport Code

Domain Decomposition of a Constructive Solid Geometry Monte Carlo Transport Code PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 17

Book Description
Domain decomposition has been implemented in a Constructive Solid Geometry (CSG) Monte Carlo neutron transport code. Previous methods to parallelize a CSG code relied entirely on particle parallelism; but in our approach we distribute the geometry as well as the particles across processors. This enables calculations whose geometric description is larger than what could fit in memory of a single processor, thus it must be distributed across processors. In addition to enabling very large calculations, we show that domain decomposition can speed up calculations compared to particle parallelism alone. We also show results of a calculation of the proposed Laser Inertial-Confinement Fusion-Fission Energy (LIFE) facility, which has 5.6 million CSG parts.

Fifth World Congress ... Quebec, Canada, 1954

Fifth World Congress ... Quebec, Canada, 1954 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 132

Book Description


Parallel Domain Decomposition Methods in Fluid Models with Monte Carlo Transport

Parallel Domain Decomposition Methods in Fluid Models with Monte Carlo Transport PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Book Description
To examine the domain decomposition code coupled Monte Carlo-finite element calculation, it is important to use a domain decomposition that is suitable for the individual models. We have developed a code that simulates a Monte Carlo calculation () on a massively parallel processor. This code is used to examine the load balancing behavior of three domain decomposition () for a Monte Carlo calculation. Results are presented.

Resonance Self-Shielding Calculation Methods in Nuclear Reactors

Resonance Self-Shielding Calculation Methods in Nuclear Reactors PDF Author: Liangzhi Cao
Publisher: Woodhead Publishing
ISBN: 0323858759
Category : Technology & Engineering
Languages : en
Pages : 412

Book Description
Resonance Self-Shielding Calculation Methods in Nuclear Reactors presents the latest progress in resonance self-shielding methods for both deterministic and Mote Carlo methods, including key advances over the last decade such as high-fidelity resonance treatment, resonance interference effect and multi-group equivalence. As the demand for high-fidelity resonance self-shielding treatment is increasing due to the rapid development of advanced nuclear reactor concepts and progression in high performance computational technologies, this practical book guides students and professionals in nuclear engineering and technology through various methods with proven high precision and efficiency. - Presents a collection of resonance self-shielding methods, as well as numerical methods and numerical results - Includes new topics in resonance self-shielding treatment - Provides source codes of key calculations presented

High-Performance Computing Applications in Numerical Simulation and Edge Computing

High-Performance Computing Applications in Numerical Simulation and Edge Computing PDF Author: Changjun Hu
Publisher: Springer Nature
ISBN: 9813299878
Category : Computers
Languages : en
Pages : 247

Book Description
This book constitutes the referred proceedings of two workshops held at the 32nd ACM International Conference on Supercomputing, ACM ICS 2018, in Beijing, China, in June 2018. This volume presents the papers that have been accepted for the following workshops: Second International Workshop on High Performance Computing for Advanced Modeling and Simulation in Nuclear Energy and Environmental Science, HPCMS 2018, and First International Workshop on HPC Supported Data Analytics for Edge Computing, HiDEC 2018. The 20 full papers presented during HPCMS 2018 and HiDEC 2018 were carefully reviewed and selected from numerous submissions. The papers reflect such topics as computing methodologies; parallel algorithms; simulation types and techniques; machine learning.

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision PDF Author: Richard Hartley
Publisher: Cambridge University Press
ISBN: 1139449141
Category : Computers
Languages : en
Pages : 676

Book Description
A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.

The Multi-Agent Transport Simulation MATSim

The Multi-Agent Transport Simulation MATSim PDF Author: Andreas Horni
Publisher: Ubiquity Press
ISBN: 190918876X
Category : Technology & Engineering
Languages : en
Pages : 620

Book Description
The MATSim (Multi-Agent Transport Simulation) software project was started around 2006 with the goal of generating traffic and congestion patterns by following individual synthetic travelers through their daily or weekly activity programme. It has since then evolved from a collection of stand-alone C++ programs to an integrated Java-based framework which is publicly hosted, open-source available, automatically regression tested. It is currently used by about 40 groups throughout the world. This book takes stock of the current status. The first part of the book gives an introduction to the most important concepts, with the intention of enabling a potential user to set up and run basic simulations. The second part of the book describes how the basic functionality can be extended, for example by adding schedule-based public transit, electric or autonomous cars, paratransit, or within-day replanning. For each extension, the text provides pointers to the additional documentation and to the code base. It is also discussed how people with appropriate Java programming skills can write their own extensions, and plug them into the MATSim core. The project has started from the basic idea that traffic is a consequence of human behavior, and thus humans and their behavior should be the starting point of all modelling, and with the intuition that when simulations with 100 million particles are possible in computational physics, then behavior-oriented simulations with 10 million travelers should be possible in travel behavior research. The initial implementations thus combined concepts from computational physics and complex adaptive systems with concepts from travel behavior research. The third part of the book looks at theoretical concepts that are able to describe important aspects of the simulation system; for example, under certain conditions the code becomes a Monte Carlo engine sampling from a discrete choice model. Another important aspect is the interpretation of the MATSim score as utility in the microeconomic sense, opening up a connection to benefit cost analysis. Finally, the book collects use cases as they have been undertaken with MATSim. All current users of MATSim were invited to submit their work, and many followed with sometimes crisp and short and sometimes longer contributions, always with pointers to additional references. We hope that the book will become an invitation to explore, to build and to extend agent-based modeling of travel behavior from the stable and well tested core of MATSim documented here.

Accelerating Monte Carlo methods for Bayesian inference in dynamical models

Accelerating Monte Carlo methods for Bayesian inference in dynamical models PDF Author: Johan Dahlin
Publisher: Linköping University Electronic Press
ISBN: 9176857972
Category :
Languages : sv
Pages : 139

Book Description
Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.

Programming for Computations - MATLAB/Octave

Programming for Computations - MATLAB/Octave PDF Author: Svein Linge
Publisher: Springer
ISBN: 3319324527
Category : Computers
Languages : en
Pages : 228

Book Description
This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

Topological and Statistical Methods for Complex Data

Topological and Statistical Methods for Complex Data PDF Author: Janine Bennett
Publisher: Springer
ISBN: 3662449005
Category : Mathematics
Languages : en
Pages : 297

Book Description
This book contains papers presented at the Workshop on the Analysis of Large-scale, High-Dimensional, and Multi-Variate Data Using Topology and Statistics, held in Le Barp, France, June 2013. It features the work of some of the most prominent and recognized leaders in the field who examine challenges as well as detail solutions to the analysis of extreme scale data. The book presents new methods that leverage the mutual strengths of both topological and statistical techniques to support the management, analysis, and visualization of complex data. It covers both theory and application and provides readers with an overview of important key concepts and the latest research trends. Coverage in the book includes multi-variate and/or high-dimensional analysis techniques, feature-based statistical methods, combinatorial algorithms, scalable statistics algorithms, scalar and vector field topology, and multi-scale representations. In addition, the book details algorithms that are broadly applicable and can be used by application scientists to glean insight from a wide range of complex data sets.