DNA Replication Control in Microbial Cell Factories PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download DNA Replication Control in Microbial Cell Factories PDF full book. Access full book title DNA Replication Control in Microbial Cell Factories by Monika Glinkowska. Download full books in PDF and EPUB format.

DNA Replication Control in Microbial Cell Factories

DNA Replication Control in Microbial Cell Factories PDF Author: Monika Glinkowska
Publisher: Springer
ISBN: 3319105337
Category : Science
Languages : en
Pages : 56

Book Description
This work describes the current knowledge of biochemical mechanisms regulating initiation of DNA replication in Escherichia coli, which focuses on the control of activity of the DnaA protein. Examples of direct linkages between DNA replication and other cellular processes are provided. In addition, similarities of the mechanisms of regulation of DNA replication operating in prokaryotic and eukaryotic cells are identified, and implications for understanding more complex processes, like carcinogenesis are suggested. Studies of recent years provided evidence that regulation of DNA replication in bacteria is more complex than previously anticipated. Multiple layers of control seem to ensure coordination of this process with the increase of cellular mass and the division cycle. Metabolic processes and membrane composition may serve as points where integration of genome replication with growth conditions occurs. It is also likely that coupling of DNA synthesis with cellular metabolism may involve interactions of replication proteins with other macromolecular complexes, responsible for various cellular processes. Thus, the exact set of factors participating in triggering the replication initiation may differ depending on growth conditions. Therefore, understanding the regulation of DNA duplication requires placing this process in the context of the current knowledge on bacterial metabolism, as well as cellular and chromosomal structure. Moreover, in both Escherichia coli and eukaryotic cells, replication initiator proteins were shown to play other roles in addition to driving the assembly of replication complexes, which constitutes another, yet not sufficiently understood, layer of coordinating DNA replication with the cell cycle.

DNA Replication Control in Microbial Cell Factories

DNA Replication Control in Microbial Cell Factories PDF Author: Monika Glinkowska
Publisher: Springer
ISBN: 3319105337
Category : Science
Languages : en
Pages : 56

Book Description
This work describes the current knowledge of biochemical mechanisms regulating initiation of DNA replication in Escherichia coli, which focuses on the control of activity of the DnaA protein. Examples of direct linkages between DNA replication and other cellular processes are provided. In addition, similarities of the mechanisms of regulation of DNA replication operating in prokaryotic and eukaryotic cells are identified, and implications for understanding more complex processes, like carcinogenesis are suggested. Studies of recent years provided evidence that regulation of DNA replication in bacteria is more complex than previously anticipated. Multiple layers of control seem to ensure coordination of this process with the increase of cellular mass and the division cycle. Metabolic processes and membrane composition may serve as points where integration of genome replication with growth conditions occurs. It is also likely that coupling of DNA synthesis with cellular metabolism may involve interactions of replication proteins with other macromolecular complexes, responsible for various cellular processes. Thus, the exact set of factors participating in triggering the replication initiation may differ depending on growth conditions. Therefore, understanding the regulation of DNA duplication requires placing this process in the context of the current knowledge on bacterial metabolism, as well as cellular and chromosomal structure. Moreover, in both Escherichia coli and eukaryotic cells, replication initiator proteins were shown to play other roles in addition to driving the assembly of replication complexes, which constitutes another, yet not sufficiently understood, layer of coordinating DNA replication with the cell cycle.

Microbial Cell Factories Engineering for Production of Biomolecules

Microbial Cell Factories Engineering for Production of Biomolecules PDF Author: Vijai Singh
Publisher: Academic Press
ISBN: 0128214783
Category : Science
Languages : en
Pages : 490

Book Description
Microbial Cell Factories Engineering for Production of Biomolecules presents a compilation of chapters written by eminent scientists worldwide. Sections cover major tools and technologies for DNA synthesis, design of biosynthetic pathways, synthetic biology tools, biosensors, cell-free systems, computer-aided design, OMICS tools, CRISPR/Cas systems, and many more. Although it is not easy to find relevant information collated in a single volume, the book covers the production of a wide range of biomolecules from several MCFs, including Escherichia coli, Bacillus subtilis, Pseudomonas putida, Streptomyces, Corynebacterium, Cyanobacteria, Saccharomyces cerevisiae, Pichia pastoris and Yarrowia lipolytica, and algae, among many others. This will be an excellent platform from which scientific knowledge can grow and widen in MCF engineering research for the production of biomolecules. Needless to say, the book is a valuable source of information not only for researchers designing cell factories, but also for students, metabolic engineers, synthetic biologists, genome engineers, industrialists, stakeholders and policymakers interested in harnessing the potential of MCFs in several fields. - Offers basic understanding and a clear picture of various MCFs - Explains several tools and technologies, including DNA synthesis, synthetic biology tools, genome editing, biosensors, computer-aided design, and OMICS tools, among others - Harnesses the potential of engineered MCFs to produce a wide range of biomolecules for industrial, therapeutic, pharmaceutical, nutraceutical and biotechnological applications - Highlights the advances, challenges, and future opportunities in designing MCFs

Metabolic Engineering

Metabolic Engineering PDF Author: Sang Yup Lee
Publisher: John Wiley & Sons
ISBN: 352782345X
Category : Science
Languages : en
Pages : 1075

Book Description
Learn more about foundational and advanced topics in metabolic engineering in this comprehensive resource edited by leaders in the field Metabolic Engineering: Concepts and Applications delivers a one-stop resource for readers seeking a complete description of the concepts, models, and applications of metabolic engineering. This guide offers practical insights into the metabolic engineering of major cell lines, including E. Coli, Bacillus and Yarrowia Lipolytica, and organisms, including human, animal, and plant). The distinguished editors also offer readers resources on microbiome engineering and the use of metabolic engineering in bioremediation. Written in two parts, Metabolic Engineering begins with the essential models and strategies of the field, like Flux Balance Analysis, Quantitative Flux Analysis, and Proteome Constrained Models. It also provides an overview of topics like Pathway Design, Metabolomics, and Genome Editing of Bacteria and Eukarya. The second part contains insightful descriptions of the practical applications of metabolic engineering, including specific examples that shed light on the topics within. In addition to subjects like the metabolic engineering of animals, humans, and plants, you’ll learn more about: Metabolic engineering concepts and a historical perspective on their development The different modes of analysis, including flux balance analysis and quantitative flux analysis An illuminating and complete discussion of the thermodynamics of metabolic pathways The Genome architecture of E. coli, as well as genome editing of both bacteria and eukarya An in-depth treatment of the application of metabolic engineering techniques to organisms including corynebacterial, bacillus, and pseudomonas, and more Perfect for students of biotechnology, bioengineers, and biotechnologists, Metabolic Engineering: Concepts and Applications also has a place on the bookshelves of research institutes, biotechnological institutes and industry labs, and university libraries. It's comprehensive treatment of all relevant metabolic engineering concepts, models, and applications will be of use to practicing biotechnologists and bioengineers who wish to solidify their understanding of the field.

Minimal Cells: Design, Construction, Biotechnological Applications

Minimal Cells: Design, Construction, Biotechnological Applications PDF Author: Alvaro R. Lara
Publisher: Springer Nature
ISBN: 3030318974
Category : Science
Languages : en
Pages : 233

Book Description
This book provides a comprehensive overview of the design, generation and characterization of minimal cell systems. Written by leading experts, it presents an in-depth analysis of the current issues and challenges in the field, including recent advances in the generation and characterization of reduced-genome strains generated from model organisms with relevance in biotechnology, and basic research such as Escherichia coli, Corynebacterium glutamicum and yeast. It also discusses methodologies, such as bottom-up and top-down genome minimization strategies, as well as novel analytical and experimental approaches to characterize and generate minimal cells. Lastly, it presents the latest research related to minimal cells of serveral microorganisms, e.g. Bacillus subtilis. The design of biological systems for biotechnological purposes employs strategies aimed at optimizing specific tasks. This approach is based on enhancing certain biological functions while reducing other capacities that are not required or that could be detrimental to the desired objective. A highly optimized cell factory would be expected to have only the capacity for reproduction and for performing the expected task. Such a hypothetical organism would be considered a minimal cell. At present, numerous research groups in academia and industry are exploring the theoretical and practical implications of constructing and using minimal cells and are providing valuable fundamental insights into the characteristics of minimal genomes, leading to an understanding of the essential gene set. In addition, research in this field is providing valuable information on the physiology of minimal cells and their utilization as a biological chassis to which useful biotechnological functions can be added.

The Science and Applications of Synthetic and Systems Biology

The Science and Applications of Synthetic and Systems Biology PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309219396
Category : Science
Languages : en
Pages : 570

Book Description
Many potential applications of synthetic and systems biology are relevant to the challenges associated with the detection, surveillance, and responses to emerging and re-emerging infectious diseases. On March 14 and 15, 2011, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to explore the current state of the science of synthetic biology, including its dependency on systems biology; discussed the different approaches that scientists are taking to engineer, or reengineer, biological systems; and discussed how the tools and approaches of synthetic and systems biology were being applied to mitigate the risks associated with emerging infectious diseases. The Science and Applications of Synthetic and Systems Biology is organized into sections as a topic-by-topic distillation of the presentations and discussions that took place at the workshop. Its purpose is to present information from relevant experience, to delineate a range of pivotal issues and their respective challenges, and to offer differing perspectives on the topic as discussed and described by the workshop participants. This report also includes a collection of individually authored papers and commentary.

Microbial Physiology

Microbial Physiology PDF Author: Albert G. Moat
Publisher: John Wiley & Sons
ISBN: 0471461199
Category : Science
Languages : en
Pages : 715

Book Description
The Fourth Edition of Microbial Physiology retains the logical, easy-to-follow organization of the previous editions. An introduction to cell structure and synthesis of cell components is provided, followed by detailed discussions of genetics, metabolism, growth, and regulation for anyone wishing to understand the mechanisms underlying cell survival and growth. This comprehensive reference approaches the subject from a modern molecular genetic perspective, incorporating new insights gained from various genome projects.

Systems and Synthetic Biotechnology for Production of Nutraceuticals

Systems and Synthetic Biotechnology for Production of Nutraceuticals PDF Author: Long Liu
Publisher: Springer Nature
ISBN: 9811504466
Category : Technology & Engineering
Languages : en
Pages : 208

Book Description
This book discusses systems and synthetic biotechnologies for the production of nutraceuticals, and summarizes recent advances in nutraceutical research in terms of the physiological effects on health, potential applications, drawbacks of traditional production processes, characteristics of production strains, and advances in microbial production based on systems and synthetic biotechnology. It also examines future directions in the microbial production of nutraceuticals using systems and synthetic biology. The book is intended for researchers and graduate students in the field of molecular biology and industrial biotechnology as well as staff working in the nutraceutical industry.

Continuous Biomanufacturing

Continuous Biomanufacturing PDF Author: Ganapathy Subramanian
Publisher: John Wiley & Sons
ISBN: 3527699899
Category : Science
Languages : en
Pages : 632

Book Description
This is the most comprehensive treatise of this topic available, providing invaluable information on the technological and economic benefits to be gained from implementing continuous processes in the biopharmaceutical industry. Top experts from industry and academia cover the latest technical developments in the field, describing the use of single-use technologies alongside perfusion production platforms and downstream operations. Special emphasis is given to process control and monitoring, including such topics as 'quality by design' and automation. The book is supplemented by case studies that highlight the enormous potential of continuous manufacturing for biopharmaceutical production facilities.

Biopolymers for Biomedical and Biotechnological Applications

Biopolymers for Biomedical and Biotechnological Applications PDF Author: Bernd H. A. Rehm
Publisher: John Wiley & Sons
ISBN: 3527818308
Category : Science
Languages : en
Pages : 400

Book Description
Provides insight into biopolymers, their physicochemical properties, and their biomedical and biotechnological applications This comprehensive book is a one-stop reference for the production, modifications, and assessment of biopolymers. It highlights the technical and methodological advancements in introducing biopolymers, their study, and promoted applications. "Biopolymers for Biomedical and Biotechnological Applications" begins with a general overview of biopolymers, properties, and biocompatibility. It then provides in-depth information in three dedicated sections: Biopolymers through Bioengineering and Biotechnology Venues; Polymeric Biomaterials with Wide Applications; and Biopolymers for Specific Applications. Chapters cover: advances in biocompatibility; advanced microbial polysaccharides; microbial cell factories for biomanufacturing of polysaccharides; exploitation of exopolysaccharides from lactic acid bacteria; and the new biopolymer for biomedical application called nanocellulose. Advances in mucin biopolymer research are presented, along with those in the synthesis of fibrous proteins and their applications. The book looks at microbial polyhydroxyalkanoates (PHAs), as well as natural and synthetic biopolymers in drug delivery and tissue engineering. It finishes with a chapter on the current state and applications of, and future trends in, biopolymers in regenerative medicine. * Offers a complete and thorough treatment of biopolymers from synthesis strategies and physiochemical properties to applications in industrial and medical biotechnology * Discusses the most attracted biopolymers with wide and specific applications * Takes a systematic approach to the field which allows readers to grasp and implement strategies for biomedical and biotechnological applications "Biopolymers for Biomedical and Biotechnological Applications" appeals to biotechnologists, bioengineers, and polymer chemists, as well as to those working in the biotechnological industry and institutes.

Fungal Cell Factories for Sustainable Nanomaterials Productions and Agricultural Applications

Fungal Cell Factories for Sustainable Nanomaterials Productions and Agricultural Applications PDF Author: Kamel A Abd-Elsalam
Publisher: Elsevier
ISBN: 0323985505
Category : Business & Economics
Languages : en
Pages : 824

Book Description
Fungal Cell Factories for Sustainable Nanomaterials Productions and Agricultural Applications explores the mycogenic synthesis of many metal nanoparticles, including processing processes, environmental protection, and future perspectives. Nanomaterials, including silver, gold, palladium, copper, zinc, selenium, titanium dioxide, metal sulphide, cellulose, have been formed by major fungal genes, such as mushrooms, Fusarium, Trichoderma, endophytic fungi, and yeast, in addition to lichens. Understanding the exact process involved in the synthesis of nanoparticles and the effects of various factors on the reduction of metal ions can help to improve low-cost strategies for the synthesis and extraction of nanoparticles. Other sections focus on a new framework for the production of nano-antimicrobial, the use of myconanoparticles against plant diseases, post-harvest antibiotics, mycotoxin control and plant pests in addition to certain animal pathogens. Myconanomaterials are well developed with great potential and promise for advanced diagnostics, biosensors, precision farming and targeted smart delivery systems. - Assesses the impact of a variety of copper-based nanostructures on agri-food sectors, addressing the most relevant knowledge gaps - Explores the opportunities that myconanotechnology can provide for industrial applications - Explains the major challenges of applying myconanotechnology at an industrial scale