Discrete-Time Neural Observers

Discrete-Time Neural Observers PDF Author: Alma Y Alanis
Publisher: Academic Press
ISBN: 0128105445
Category : Computers
Languages : en
Pages : 152

Book Description
Discrete-Time Neural Observers: Analysis and Applications presents recent advances in the theory of neural state estimation for discrete-time unknown nonlinear systems with multiple inputs and outputs. The book includes rigorous mathematical analyses, based on the Lyapunov approach, that guarantee their properties. In addition, for each chapter, simulation results are included to verify the successful performance of the corresponding proposed schemes. In order to complete the treatment of these schemes, the authors also present simulation and experimental results related to their application in meaningful areas, such as electric three phase induction motors and anaerobic process, which show the applicability of such designs. The proposed schemes can be employed for different applications beyond those presented. The book presents solutions for the state estimation problem of unknown nonlinear systems based on two schemes. For the first one, a full state estimation problem is considered; the second one considers the reduced order case with, and without, the presence of unknown delays. Both schemes are developed in discrete-time using recurrent high order neural networks in order to design the neural observers, and the online training of the respective neural networks is performed by Kalman Filtering. - Presents online learning for Recurrent High Order Neural Networks (RHONN) using the Extended Kalman Filter (EKF) algorithm - Contains full and reduced order neural observers for discrete-time unknown nonlinear systems, with and without delays - Includes rigorous analyses of the proposed schemes, including the nonlinear system, the respective observer, and the Kalman filter learning - Covers real-time implementation and simulation results for all the proposed schemes to meaningful applications

Discrete-Time High Order Neural Control

Discrete-Time High Order Neural Control PDF Author: Edgar N. Sanchez
Publisher: Springer
ISBN: 3540782893
Category : Technology & Engineering
Languages : en
Pages : 116

Book Description
Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.

Discrete-Time Recurrent Neural Control

Discrete-Time Recurrent Neural Control PDF Author: Edgar N. Sanchez
Publisher: CRC Press
ISBN: 1351377426
Category : Technology & Engineering
Languages : en
Pages : 205

Book Description
The book presents recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. The simulation results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, to establish its properties. The book contains two sections: the first focuses on the analyses of control techniques; the second is dedicated to illustrating results of real-time applications. It also provides solutions for the output trajectory tracking problem of unknown nonlinear systems based on sliding modes and inverse optimal control scheme. "This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems. The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market. It is an excellent book after all." — Guanrong Chen, City University of Hong Kong "This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author." — Alma Y. Alanis, University of Guadalajara, Mexico "This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones." — Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India

Neural Network Control of Nonlinear Discrete-Time Systems

Neural Network Control of Nonlinear Discrete-Time Systems PDF Author: Jagannathan Sarangapani
Publisher: CRC Press
ISBN: 1420015451
Category : Technology & Engineering
Languages : en
Pages : 624

Book Description
Intelligent systems are a hallmark of modern feedback control systems. But as these systems mature, we have come to expect higher levels of performance in speed and accuracy in the face of severe nonlinearities, disturbances, unforeseen dynamics, and unstructured uncertainties. Artificial neural networks offer a combination of adaptability, parallel processing, and learning capabilities that outperform other intelligent control methods in more complex systems. Borrowing from Biology Examining neurocontroller design in discrete-time for the first time, Neural Network Control of Nonlinear Discrete-Time Systems presents powerful modern control techniques based on the parallelism and adaptive capabilities of biological nervous systems. At every step, the author derives rigorous stability proofs and presents simulation examples to demonstrate the concepts. Progressive Development After an introduction to neural networks, dynamical systems, control of nonlinear systems, and feedback linearization, the book builds systematically from actuator nonlinearities and strict feedback in nonlinear systems to nonstrict feedback, system identification, model reference adaptive control, and novel optimal control using the Hamilton-Jacobi-Bellman formulation. The author concludes by developing a framework for implementing intelligent control in actual industrial systems using embedded hardware. Neural Network Control of Nonlinear Discrete-Time Systems fosters an understanding of neural network controllers and explains how to build them using detailed derivations, stability analysis, and computer simulations.

Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications

Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications PDF Author: Zhang, Ming
Publisher: IGI Global
ISBN: 1615207120
Category : Computers
Languages : en
Pages : 660

Book Description
"This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.

Issues in Tissue Engineering and Transplant and Transfusion Medicine: 2011 Edition

Issues in Tissue Engineering and Transplant and Transfusion Medicine: 2011 Edition PDF Author:
Publisher: ScholarlyEditions
ISBN: 1464964882
Category : Medical
Languages : en
Pages : 1992

Book Description
Issues in Tissue Engineering and Transplant and Transfusion Medicine: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Tissue Engineering and Transplant and Transfusion Medicine. The editors have built Issues in Tissue Engineering and Transplant and Transfusion Medicine: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Tissue Engineering and Transplant and Transfusion Medicine in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Tissue Engineering and Transplant and Transfusion Medicine: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Advances in Computational Intelligence

Advances in Computational Intelligence PDF Author: Wen Yu
Publisher: Springer Science & Business Media
ISBN: 3642031560
Category : Computers
Languages : en
Pages : 524

Book Description
This book constitutes the proceedings of the second International Workshop on Advanced Computational Intelligence (IWACI 2009), with a sequel of IWACI 2008 successfully held in Macao, China. IWACI 2009 provided a high-level international forum for scientists, engineers, and educators to present state-of-the-art research in computational intelligence and related fields. Over the past decades, computational intelligence community has witnessed t- mendous efforts and developments in all aspects of theoretical foundations, archit- tures and network organizations, modelling and simulation, empirical study, as well as a wide range of applications across different domains. IWACI 2009 provided a great platform for the community to share their latest research results, discuss critical future research directions, stimulate innovative research ideas, as well as facilitate inter- tional multidisciplinary collaborations. IWACI 2009 received 146 submissions from about 373 authors in 26 countries and regions (Australia, Brazil, Canada, China, Chile, Hong Kong, India, Islamic Republic of Iran, Japan, Jordan, Macao, Malaysia, Mexico, Pakistan, Philippines, Qatar, Republic of Korea, Singapore, South Africa, Sri Lanka, Spain, Taiwan, Thailand, UK, USA, Ve- zuela, Vietnam, and Yemen) across six continents (Asia, Europe, North America, South America, Africa, and Oceania). Based on the rigorous peer reviews by the Program Committee members, 52 high-quality papers were selected for publication in this book, with an acceptance rate of 36.3%. These papers cover major topics of the theoretical research, empirical study, and applications of computational intelligence.

Nonlinear Control and Filtering Using Differential Flatness Approaches

Nonlinear Control and Filtering Using Differential Flatness Approaches PDF Author: Gerasimos G. Rigatos
Publisher: Springer
ISBN: 3319164201
Category : Technology & Engineering
Languages : en
Pages : 755

Book Description
This monograph presents recent advances in differential flatness theory and analyzes its use for nonlinear control and estimation. It shows how differential flatness theory can provide solutions to complicated control problems, such as those appearing in highly nonlinear multivariable systems and distributed-parameter systems. Furthermore, it shows that differential flatness theory makes it possible to perform filtering and state estimation for a wide class of nonlinear dynamical systems and provides several descriptive test cases. The book focuses on the design of nonlinear adaptive controllers and nonlinear filters, using exact linearization based on differential flatness theory. The adaptive controllers obtained can be applied to a wide class of nonlinear systems with unknown dynamics, and assure reliable functioning of the control loop under uncertainty and varying operating conditions. The filters obtained outperform other nonlinear filters in terms of accuracy of estimation and computation speed. The book presents a series of application examples to confirm the efficiency of the proposed nonlinear filtering and adaptive control schemes for various electromechanical systems. These include: · industrial robots; · mobile robots and autonomous vehicles; · electric power generation; · electric motors and actuators; · power electronics; · internal combustion engines; · distributed-parameter systems; and · communication systems. Differential Flatness Approaches to Nonlinear Control and Filtering will be a useful reference for academic researchers studying advanced problems in nonlinear control and nonlinear dynamics, and for engineers working on control applications in electromechanical systems.

Simultaneity: Temporal Structures And Observer Perspectives

Simultaneity: Temporal Structures And Observer Perspectives PDF Author: Otto E Rossler
Publisher: World Scientific
ISBN: 9814471771
Category : Science
Languages : en
Pages : 490

Book Description
This book presents an interdisciplinary approach to the question of how observer-participant perspectives are generated, what constrains them and how they may be modified. These questions are of vital importance and must be addressed in any discipline before formulating a hypothesis or designing a model about reality. Both epistemological questions about the nature of temporal nested structures and practical applications of our ability to contextualize are discussed. The resulting temporal observer-participant perspectives reflect approaches to the concept of simultaneity from the viewpoints of philosophers, logicians, cyberneticists and systems theorists, mathematicians, psychologists, medical practitioners, physicists, educationists, economists and musicologists. Although the main focus is on the cognitive sciences, as constraints to observer perspectives arise primarily from this field, the book will appeal to researchers of all disciplines and interested layman readers.

Intelligent Automatic Generation Control

Intelligent Automatic Generation Control PDF Author: Hassan Bevrani
Publisher: CRC Press
ISBN: 1351833294
Category : Technology & Engineering
Languages : en
Pages : 439

Book Description
Automatic generation control (AGC) is one of the most important control problems in the design and operation of interconnected power systems. Its significance continues to grow as a result of several factors: the changing structure and increasing size, complexity, and functionality of power systems, the rapid emergence (and uncertainty) of renewable energy sources, developments in power generation/consumption technologies, and environmental constraints. Delving into the fundamentals of power system AGC, Intelligent Automatic Generation Control explores ways to make the infrastructures of tomorrow smarter and more flexible. These frameworks must be able to handle complex multi-objective regulation optimization problems, and they must be highly diversified in terms of policies, control strategies, and wide distribution in demand and supply sources—all via an intelligent scheme. The core of such intelligent systems should be based on efficient, adaptable algorithms, advanced information technology, and fast communication devices to ensure that the AGC systems can maintain generation-load balance following serious disturbances. This book addresses several new schemes using intelligent control techniques for simultaneous minimization of system frequency deviation and tie-line power changes, which is required for successful operation of interconnected power systems. It also concentrates on physical and engineering aspects and examines several developed control strategies using real-time simulations. This reference will prove useful for engineers and operators in power system planning and operation, as well as academic researchers and students in field of electrical engineering.