Author: Saber N. Elaydi
Publisher: World Scientific
ISBN: 9814287644
Category : Mathematics
Languages : en
Pages : 438
Book Description
This volume holds a collection of articles based on the talks presented at ICDEA 2007 in Lisbon, Portugal. The volume encompasses current topics on stability and bifurcation, chaos, mathematical biology, iteration theory, nonautonomous systems, and stochastic dynamical systems.
Discrete Dynamics and Difference Equations
Author: Saber N. Elaydi
Publisher: World Scientific
ISBN: 9814287644
Category : Mathematics
Languages : en
Pages : 438
Book Description
This volume holds a collection of articles based on the talks presented at ICDEA 2007 in Lisbon, Portugal. The volume encompasses current topics on stability and bifurcation, chaos, mathematical biology, iteration theory, nonautonomous systems, and stochastic dynamical systems.
Publisher: World Scientific
ISBN: 9814287644
Category : Mathematics
Languages : en
Pages : 438
Book Description
This volume holds a collection of articles based on the talks presented at ICDEA 2007 in Lisbon, Portugal. The volume encompasses current topics on stability and bifurcation, chaos, mathematical biology, iteration theory, nonautonomous systems, and stochastic dynamical systems.
Progress on Difference Equations and Discrete Dynamical Systems
Author: Steve Baigent
Publisher: Springer Nature
ISBN: 3030601072
Category : Mathematics
Languages : en
Pages : 440
Book Description
This book comprises selected papers of the 25th International Conference on Difference Equations and Applications, ICDEA 2019, held at UCL, London, UK, in June 2019. The volume details the latest research on difference equations and discrete dynamical systems, and their application to areas such as biology, economics, and the social sciences. Some chapters have a tutorial style and cover the history and more recent developments for a particular topic, such as chaos, bifurcation theory, monotone dynamics, and global stability. Other chapters cover the latest personal research contributions of the author(s) in their particular area of expertise and range from the more technical articles on abstract systems to those that discuss the application of difference equations to real-world problems. The book is of interest to both Ph.D. students and researchers alike who wish to keep abreast of the latest developments in difference equations and discrete dynamical systems.
Publisher: Springer Nature
ISBN: 3030601072
Category : Mathematics
Languages : en
Pages : 440
Book Description
This book comprises selected papers of the 25th International Conference on Difference Equations and Applications, ICDEA 2019, held at UCL, London, UK, in June 2019. The volume details the latest research on difference equations and discrete dynamical systems, and their application to areas such as biology, economics, and the social sciences. Some chapters have a tutorial style and cover the history and more recent developments for a particular topic, such as chaos, bifurcation theory, monotone dynamics, and global stability. Other chapters cover the latest personal research contributions of the author(s) in their particular area of expertise and range from the more technical articles on abstract systems to those that discuss the application of difference equations to real-world problems. The book is of interest to both Ph.D. students and researchers alike who wish to keep abreast of the latest developments in difference equations and discrete dynamical systems.
Discrete Dynamical Systems and Difference Equations with Mathematica
Author: Mustafa R.S. Kulenovic
Publisher: CRC Press
ISBN: 1420035355
Category : Mathematics
Languages : en
Pages : 363
Book Description
Following the work of Yorke and Li in 1975, the theory of discrete dynamical systems and difference equations developed rapidly. The applications of difference equations also grew rapidly, especially with the introduction of graphical-interface software that can plot trajectories, calculate Lyapunov exponents, plot bifurcation diagrams, and find ba
Publisher: CRC Press
ISBN: 1420035355
Category : Mathematics
Languages : en
Pages : 363
Book Description
Following the work of Yorke and Li in 1975, the theory of discrete dynamical systems and difference equations developed rapidly. The applications of difference equations also grew rapidly, especially with the introduction of graphical-interface software that can plot trajectories, calculate Lyapunov exponents, plot bifurcation diagrams, and find ba
An Introduction to Difference Equations
Author: Saber N. Elaydi
Publisher: Springer Science & Business Media
ISBN: 1475791682
Category : Mathematics
Languages : en
Pages : 398
Book Description
This book grew out of lecture notes I used in a course on difference equations that I taught at Trinity University for the past five years. The classes were largely pop ulated by juniors and seniors majoring in Mathematics, Engineering, Chemistry, Computer Science, and Physics. This book is intended to be used as a textbook for a course on difference equations at the level of both advanced undergraduate and beginning graduate. It may also be used as a supplement for engineering courses on discrete systems and control theory. The main prerequisites for most of the material in this book are calculus and linear algebra. However, some topics in later chapters may require some rudiments of advanced calculus. Since many of the chapters in the book are independent, the instructor has great flexibility in choosing topics for the first one-semester course. A diagram showing the interdependence of the chapters in the book appears following the preface. This book presents the current state of affairs in many areas such as stability, Z-transform, asymptoticity, oscillations and control theory. However, this book is by no means encyclopedic and does not contain many important topics, such as Numerical Analysis, Combinatorics, Special functions and orthogonal polyno mials, boundary value problems, partial difference equations, chaos theory, and fractals. The nonselection of these topics is dictated not only by the limitations imposed by the elementary nature of this book, but also by the research interest (or lack thereof) of the author.
Publisher: Springer Science & Business Media
ISBN: 1475791682
Category : Mathematics
Languages : en
Pages : 398
Book Description
This book grew out of lecture notes I used in a course on difference equations that I taught at Trinity University for the past five years. The classes were largely pop ulated by juniors and seniors majoring in Mathematics, Engineering, Chemistry, Computer Science, and Physics. This book is intended to be used as a textbook for a course on difference equations at the level of both advanced undergraduate and beginning graduate. It may also be used as a supplement for engineering courses on discrete systems and control theory. The main prerequisites for most of the material in this book are calculus and linear algebra. However, some topics in later chapters may require some rudiments of advanced calculus. Since many of the chapters in the book are independent, the instructor has great flexibility in choosing topics for the first one-semester course. A diagram showing the interdependence of the chapters in the book appears following the preface. This book presents the current state of affairs in many areas such as stability, Z-transform, asymptoticity, oscillations and control theory. However, this book is by no means encyclopedic and does not contain many important topics, such as Numerical Analysis, Combinatorics, Special functions and orthogonal polyno mials, boundary value problems, partial difference equations, chaos theory, and fractals. The nonselection of these topics is dictated not only by the limitations imposed by the elementary nature of this book, but also by the research interest (or lack thereof) of the author.
Discrete Dynamical Models
Author: Ernesto Salinelli
Publisher: Springer
ISBN: 3319022911
Category : Mathematics
Languages : en
Pages : 398
Book Description
This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economics. The exposition is self-contained: some appendices present prerequisites, algorithms and suggestions for computer simulations. The analysis of several examples is enriched by the proposition of many related exercises of increasing difficulty; in the last chapter the detailed solution is given for most of them.
Publisher: Springer
ISBN: 3319022911
Category : Mathematics
Languages : en
Pages : 398
Book Description
This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economics. The exposition is self-contained: some appendices present prerequisites, algorithms and suggestions for computer simulations. The analysis of several examples is enriched by the proposition of many related exercises of increasing difficulty; in the last chapter the detailed solution is given for most of them.
Differential Equations and Dynamical Systems
Author: Lawrence Perko
Publisher: Springer Science & Business Media
ISBN: 1468402498
Category : Mathematics
Languages : en
Pages : 530
Book Description
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.
Publisher: Springer Science & Business Media
ISBN: 1468402498
Category : Mathematics
Languages : en
Pages : 530
Book Description
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.
Differential Dynamical Systems, Revised Edition
Author: James D. Meiss
Publisher: SIAM
ISBN: 161197464X
Category : Mathematics
Languages : en
Pages : 410
Book Description
Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.
Publisher: SIAM
ISBN: 161197464X
Category : Mathematics
Languages : en
Pages : 410
Book Description
Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.
Dynamic Equations on Time Scales
Author: Martin Bohner
Publisher: Springer Science & Business Media
ISBN: 1461202019
Category : Mathematics
Languages : en
Pages : 365
Book Description
On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.
Publisher: Springer Science & Business Media
ISBN: 1461202019
Category : Mathematics
Languages : en
Pages : 365
Book Description
On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.
Discrete Dynamical Systems, Bifurcations and Chaos in Economics
Author: Wei-Bin Zhang
Publisher: Elsevier
ISBN: 0080462464
Category : Mathematics
Languages : en
Pages : 459
Book Description
This book is a unique blend of difference equations theory and its exciting applications to economics. It deals with not only theory of linear (and linearized) difference equations, but also nonlinear dynamical systems which have been widely applied to economic analysis in recent years. It studies most important concepts and theorems in difference equations theory in a way that can be understood by anyone who has basic knowledge of calculus and linear algebra. It contains well-known applications and many recent developments in different fields of economics. The book also simulates many models to illustrate paths of economic dynamics. - A unique book concentrated on theory of discrete dynamical systems and its traditional as well as advanced applications to economics - Mathematical definitions and theorems are introduced in a systematic and easily accessible way - Examples are from almost all fields of economics; technically proceeding from basic to advanced topics - Lively illustrations with numerous figures - Numerous simulation to see paths of economic dynamics - Comprehensive treatment of the subject with a comprehensive and easily accessible approach
Publisher: Elsevier
ISBN: 0080462464
Category : Mathematics
Languages : en
Pages : 459
Book Description
This book is a unique blend of difference equations theory and its exciting applications to economics. It deals with not only theory of linear (and linearized) difference equations, but also nonlinear dynamical systems which have been widely applied to economic analysis in recent years. It studies most important concepts and theorems in difference equations theory in a way that can be understood by anyone who has basic knowledge of calculus and linear algebra. It contains well-known applications and many recent developments in different fields of economics. The book also simulates many models to illustrate paths of economic dynamics. - A unique book concentrated on theory of discrete dynamical systems and its traditional as well as advanced applications to economics - Mathematical definitions and theorems are introduced in a systematic and easily accessible way - Examples are from almost all fields of economics; technically proceeding from basic to advanced topics - Lively illustrations with numerous figures - Numerous simulation to see paths of economic dynamics - Comprehensive treatment of the subject with a comprehensive and easily accessible approach
Ordinary Differential Equations and Dynamical Systems
Author: Gerald Teschl
Publisher: American Mathematical Society
ISBN: 147047641X
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Publisher: American Mathematical Society
ISBN: 147047641X
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.