Discontinuous Groups and Riemann Surfaces (AM-79), Volume 79 PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Discontinuous Groups and Riemann Surfaces (AM-79), Volume 79 PDF full book. Access full book title Discontinuous Groups and Riemann Surfaces (AM-79), Volume 79 by Leon Greenberg. Download full books in PDF and EPUB format.

Discontinuous Groups and Riemann Surfaces (AM-79), Volume 79

Discontinuous Groups and Riemann Surfaces (AM-79), Volume 79 PDF Author: Leon Greenberg
Publisher: Princeton University Press
ISBN: 1400881641
Category : Mathematics
Languages : en
Pages : 456

Book Description
Study 79 contains a collection of papers presented at the Conference on Discontinuous Groups and Ricmann Surfaces at the University of Maryland, May 21-25, 1973. The papers, by leading authorities, deal mainly with Fuchsian and Kleinian groups, Teichmüller spaces, Jacobian varieties, and quasiconformal mappings. These topics are intertwined, representing a common meeting of algebra, geometry, and analysis.

Discontinuous Groups and Riemann Surfaces (AM-79), Volume 79

Discontinuous Groups and Riemann Surfaces (AM-79), Volume 79 PDF Author: Leon Greenberg
Publisher: Princeton University Press
ISBN: 1400881641
Category : Mathematics
Languages : en
Pages : 456

Book Description
Study 79 contains a collection of papers presented at the Conference on Discontinuous Groups and Ricmann Surfaces at the University of Maryland, May 21-25, 1973. The papers, by leading authorities, deal mainly with Fuchsian and Kleinian groups, Teichmüller spaces, Jacobian varieties, and quasiconformal mappings. These topics are intertwined, representing a common meeting of algebra, geometry, and analysis.

Discontinuous Groups of Isometries in the Hyperbolic Plane

Discontinuous Groups of Isometries in the Hyperbolic Plane PDF Author: Werner Fenchel
Publisher: Walter de Gruyter
ISBN: 3110891352
Category : Mathematics
Languages : en
Pages : 389

Book Description
This is an introductory textbook on isometry groups of the hyperbolic plane. Interest in such groups dates back more than 120 years. Examples appear in number theory (modular groups and triangle groups), the theory of elliptic functions, and the theory of linear differential equations in the complex domain (giving rise to the alternative name Fuchsian groups). The current book is based on what became known as the famous Fenchel-Nielsen manuscript. Jakob Nielsen (1890-1959) started this project well before World War II, and his interest arose through his deep investigations on the topology of Riemann surfaces and from the fact that the fundamental group of a surface of genus greater than one is represented by such a discontinuous group. Werner Fenchel (1905-1988) joined the project later and overtook much of the preparation of the manuscript. The present book is special because of its very complete treatment of groups containing reversions and because it avoids the use of matrices to represent Moebius maps. This text is intended for students and researchers in the many areas of mathematics that involve the use of discontinuous groups.

Discontinuous Groups and Automorphic Functions

Discontinuous Groups and Automorphic Functions PDF Author: Joseph Lehner
Publisher: American Mathematical Soc.
ISBN: 0821815083
Category : Mathematics
Languages : en
Pages : 440

Book Description
Much has been written on the theory of discontinuous groups and automorphic functions since 1880, when the subject received its first formulation. The purpose of this book is to bring together in one place both the classical and modern aspects of the theory, and to present them clearly and in a modern language and notation. The emphasis in this book is on the fundamental parts of the subject. The book is directed to three classes of readers: graduate students approaching the subject for the first time, mature mathematicians who wish to gain some knowledge and understanding of automorphic function theory, and experts.

Surfaces and Planar Discontinuous Groups

Surfaces and Planar Discontinuous Groups PDF Author: Heiner Zieschang
Publisher: Springer
ISBN: 3540699813
Category : Mathematics
Languages : en
Pages : 344

Book Description


Moduli Spaces of Riemann Surfaces

Moduli Spaces of Riemann Surfaces PDF Author: Benson Farb
Publisher: American Mathematical Soc.
ISBN: 0821898876
Category : Mathematics
Languages : en
Pages : 371

Book Description
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

A Course in Complex Analysis and Riemann Surfaces

A Course in Complex Analysis and Riemann Surfaces PDF Author: Wilhelm Schlag
Publisher: American Mathematical Society
ISBN: 0821898477
Category : Mathematics
Languages : en
Pages : 402

Book Description
Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces. The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level. This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.

The Geometry of Discrete Groups

The Geometry of Discrete Groups PDF Author: Alan F. Beardon
Publisher: Springer Science & Business Media
ISBN: 1461211468
Category : Mathematics
Languages : en
Pages : 350

Book Description
This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publications rely on Euclidean estimates and geometry. However, the recent developments have again emphasized the need for hyperbolic geometry, and I have included a comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. It is hoped that this chapter will serve as a "dictionary" offormulae in plane hyperbolic geometry and as such will be of interest and use in its own right.

Geometry and Spectra of Compact Riemann Surfaces

Geometry and Spectra of Compact Riemann Surfaces PDF Author: Peter Buser
Publisher: Springer Science & Business Media
ISBN: 0817649921
Category : Mathematics
Languages : en
Pages : 473

Book Description
This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature –1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.

Finitely Presented Groups

Finitely Presented Groups PDF Author: Volker Diekert
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111473570
Category : Mathematics
Languages : en
Pages : 252

Book Description
This book contains surveys and research articles on the state-of-the-art in finitely presented groups for researchers and graduate students. Overviews of current trends in exponential groups and of the classification of finite triangle groups and finite generalized tetrahedron groups are complemented by new results on a conjecture of Rosenberger and an approximation theorem. A special emphasis is on algorithmic techniques and their complexity, both for finitely generated groups and for finite Z-algebras, including explicit computer calculations highlighting important classical methods. A further chapter surveys connections to mathematical logic, in particular to universal theories of various classes of groups, and contains new results on countable elementary free groups. Applications to cryptography include overviews of techniques based on representations of p-groups and of non-commutative group actions. Further applications of finitely generated groups to topology and artificial intelligence complete the volume. All in all, leading experts provide up-to-date overviews and current trends in combinatorial group theory and its connections to cryptography and other areas.

Hyperbolic Manifolds

Hyperbolic Manifolds PDF Author: Albert Marden
Publisher: Cambridge University Press
ISBN: 1107116740
Category : Mathematics
Languages : en
Pages : 535

Book Description
This study of hyperbolic geometry has both pedagogy and research in mind, and includes exercises and further reading for each chapter.