Direct Imaging of the Atomic Structure and Chemistry of Defects and Interfaces by Z-contrast STEM (scanning Transmission Electron Microscopy). PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Direct Imaging of the Atomic Structure and Chemistry of Defects and Interfaces by Z-contrast STEM (scanning Transmission Electron Microscopy). PDF full book. Access full book title Direct Imaging of the Atomic Structure and Chemistry of Defects and Interfaces by Z-contrast STEM (scanning Transmission Electron Microscopy). by . Download full books in PDF and EPUB format.

Direct Imaging of the Atomic Structure and Chemistry of Defects and Interfaces by Z-contrast STEM (scanning Transmission Electron Microscopy).

Direct Imaging of the Atomic Structure and Chemistry of Defects and Interfaces by Z-contrast STEM (scanning Transmission Electron Microscopy). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Book Description
Z-contrast scanning transmission electron microscopy (STEM) is a fundamentally new approach to high-resolution imaging which provides unambiguous, compositionally sensitive images on the atomic scale. Such images are intuitively interpretable, even in thick regions of the sample, tremendously simplifying determination of the structure and chemistry of defects and interfaces. To illustrate this, examples are presented of commonly observed planar defects in laser-ablated thin films of YBa2Cu3O{sub 7-x}. Film/substrate interfaces are shown to be chemically diffuse on the atomic scale and steps or undulations in the substrate need not result in defects in the film. Low-angle grain boundaries are found to be chemically clean, the drastic reductions in critical currents with tilt angle being due to the array of intrinsic structural defects comprising the boundary. 20 refs., 10 figs.

Direct Imaging of the Atomic Structure and Chemistry of Defects and Interfaces by Z-contrast STEM (scanning Transmission Electron Microscopy).

Direct Imaging of the Atomic Structure and Chemistry of Defects and Interfaces by Z-contrast STEM (scanning Transmission Electron Microscopy). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Book Description
Z-contrast scanning transmission electron microscopy (STEM) is a fundamentally new approach to high-resolution imaging which provides unambiguous, compositionally sensitive images on the atomic scale. Such images are intuitively interpretable, even in thick regions of the sample, tremendously simplifying determination of the structure and chemistry of defects and interfaces. To illustrate this, examples are presented of commonly observed planar defects in laser-ablated thin films of YBa2Cu3O{sub 7-x}. Film/substrate interfaces are shown to be chemically diffuse on the atomic scale and steps or undulations in the substrate need not result in defects in the film. Low-angle grain boundaries are found to be chemically clean, the drastic reductions in critical currents with tilt angle being due to the array of intrinsic structural defects comprising the boundary. 20 refs., 10 figs.

Atomic-scale Structure and Chemistry of Interfaces by Z-contrast Imaging and Electron Energy Loss Spectroscopy in the STEM.

Atomic-scale Structure and Chemistry of Interfaces by Z-contrast Imaging and Electron Energy Loss Spectroscopy in the STEM. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Book Description
The macroscopic properties of many materials are controlled by the structure and chemistry at grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. The high-resolution Z-contrast imaging technique in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition can be interpreted intuitively. This direct image allows the electron probe to be positioned over individual atomic columns for parallel detection electron energy loss spectroscopy (EELS) at a spatial resolution approaching 0.22nm. In this paper we have combined the structural information available in the Z-contrast images with the bonding information obtained from the fine structure within the EELS edges to determine the grain boundary structure in a SrTiO3 bicrystal.

Scanning Transmission Electron Microscopy

Scanning Transmission Electron Microscopy PDF Author: Stephen J. Pennycook
Publisher: Springer Science & Business Media
ISBN: 1441972005
Category : Technology & Engineering
Languages : en
Pages : 764

Book Description
Scanning transmission electron microscopy has become a mainstream technique for imaging and analysis at atomic resolution and sensitivity, and the authors of this book are widely credited with bringing the field to its present popularity. Scanning Transmission Electron Microscopy(STEM): Imaging and Analysis will provide a comprehensive explanation of the theory and practice of STEM from introductory to advanced levels, covering the instrument, image formation and scattering theory, and definition and measurement of resolution for both imaging and analysis. The authors will present examples of the use of combined imaging and spectroscopy for solving materials problems in a variety of fields, including condensed matter physics, materials science, catalysis, biology, and nanoscience. Therefore this will be a comprehensive reference for those working in applied fields wishing to use the technique, for graduate students learning microscopy for the first time, and for specialists in other fields of microscopy.

Scanning Transmission Electron Microscopy

Scanning Transmission Electron Microscopy PDF Author: Alina Bruma
Publisher: CRC Press
ISBN: 0429516169
Category : Technology & Engineering
Languages : en
Pages : 162

Book Description
Scanning Transmission Electron Microscopy: Advanced Characterization Methods for Materials Science Applications The information comprised in this book is focused on discussing the latest approaches in the recording of high-fidelity quantitative annular dark-field (ADF) data. It showcases the application of machine learning in electron microscopy and the latest advancements in image processing and data interpretation for materials notoriously difficult to analyze using scanning transmission electron microscopy (STEM). It also highlights strategies to record and interpret large electron diffraction datasets for the analysis of nanostructures. This book: Discusses existing approaches for experimental design in the recording of high-fidelity quantitative ADF data Presents the most common types of scintillator-photomultiplier ADF detectors, along with their strengths and weaknesses. Proposes strategies to minimize the introduction of errors from these detectors and avenues for dealing with residual errors Discusses the practice of reliable multiframe imaging, along with the benefits and new experimental opportunities it presents in electron dose or dose-rate management Focuses on supervised and unsupervised machine learning for electron microscopy Discusses open data formats, community-driven software, and data repositories Proposes methods to process information at both global and local scales, and discusses avenues to improve the storage, transfer, analysis, and interpretation of multidimensional datasets Provides the spectrum of possibilities to study materials at the resolution limit by means of new developments in instrumentation Recommends methods for quantitative structural characterization of sensitive nanomaterials using electron diffraction techniques and describes strategies to collect electron diffraction patterns for such materials This book helps academics, researchers, and industry professionals in materials science, chemistry, physics, and related fields to understand and apply computer-science–derived analysis methods to solve problems regarding data analysis and interpretation of materials properties.

Z-contrast Scanning Transmission Electron Microscopy of Nanometer-scale Coated Particulate Materials

Z-contrast Scanning Transmission Electron Microscopy of Nanometer-scale Coated Particulate Materials PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
Particulate materials with unique functional properties have been the focus of much attention in recent years. Of particular interest, due to their considerable scientific and technological importance, are particles coated with nanoparticles. These have greatly stimulated interest for their novel structure and properties. In these kinds of particulate materials, the interface structures between the support particle and the nanoparticle play a crucial role in controlling their properties. Consequently, imaging of the atomic structures at the interfaces can provide deep understanding of the relationship between the particulate and the corresponding properties. Z-contrast scanning transmission electron microscope (STEM) provides a new view of materials on the atomic scale, a direct image of atomic structure composition which can be interpreted without the need for any preconceived model structure. Therefore it is a powerful tool in the study of particulate materials. In this report, the authors present the structures of 18 micron diameter alumina particles coated with Ag nanoparticles. Particulates were prepared by a laser ablation technique, which involves laser ablation of the target material (Ag) onto a fluidized bed of core particles (alumina). The core alumina particles were fluidized inside the deposition system using a mechanical vibration method. For the STEM analysis, the particulates were lightly crushed in water using a pestle and mortar, then diluted in ethanol and deposited on a TEM grid coated with an amorphous carbon thin film.

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 852

Book Description


Scanning Transmission Electron Microscopy Of Nanomaterials: Basics Of Imaging And Analysis

Scanning Transmission Electron Microscopy Of Nanomaterials: Basics Of Imaging And Analysis PDF Author: Nobuo Tanaka
Publisher: World Scientific
ISBN: 1783264713
Category : Science
Languages : en
Pages : 616

Book Description
The basics, present status and future prospects of high-resolution scanning transmission electron microscopy (STEM) are described in the form of a textbook for advanced undergraduates and graduate students. This volume covers recent achievements in the field of STEM obtained with advanced technologies such as spherical aberration correction, monochromator, high-sensitivity electron energy loss spectroscopy and the software of image mapping. The future prospects chapter also deals with z-slice imaging and confocal STEM for 3D analysis of nanostructured materials.

Impact of Electron and Scanning Probe Microscopy on Materials Research

Impact of Electron and Scanning Probe Microscopy on Materials Research PDF Author: David G. Rickerby
Publisher: Springer Science & Business Media
ISBN: 9780792359395
Category : Science
Languages : en
Pages : 522

Book Description
This book presents a coherent synopsis of a rapidly evolving field. Subjects covered include diffraction contrast and defect analysis by conventional TEM lattice imaging, phase contrast and resolution limits in high resolution electron microscopy. Specialised electron diffraction techniques are also covered, as is the application of parallel electron energy loss spectroscopy and scanning transmission EM for subnanometer analysis. Materials analyzed include thin films, interfaces and non-conventional materials. WDS and EDS are treated, with an emphasis on phi(rhoZeta) techniques for the analysis of thin layers and surface films. Theoretical and practical aspects of ESEM are discussed in relation to applications in crystal growth, biomaterials and polymers. Recent developments in SPM are also described. A comprehensive survey of the state of the art in electron and SPM, future research directions and prospective applications in materials engineering.

Transmission Electron Microscopy

Transmission Electron Microscopy PDF Author: C. Barry Carter
Publisher: Springer
ISBN: 3319266519
Category : Technology & Engineering
Languages : en
Pages : 543

Book Description
This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.

Electron Nano-Imaging

Electron Nano-Imaging PDF Author: Nobuo Tanaka
Publisher: Springer
ISBN: 4431565027
Category : Technology & Engineering
Languages : en
Pages : 340

Book Description
In this book, the bases of imaging and diffraction in transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are explained in the style of a textbook. The book focuses on the explanation of electron microscopic imaging of TEM and STEM without including in the main text distracting information on basic knowledge of crystal diffraction, wave optics, electron lens, and scattering and diffraction theories, which are explained separately in the appendices. A comprehensive explanation is provided on the basis of Fourier transform theory, and this approach is unique in comparison with other advanced resources on high-resolution electron microscopy. With the present textbook, readers are led to understand the essence of the imaging theories of TEM and STEM without being diverted by other knowledge of electron microscopy. The up-to-date information in this book, particularly on imaging details of STEM and aberration corrections, is valuable worldwide for today’s graduate students and professionals just starting their careers.