Direct Biofiltration and Nutrient (phosphorus) Enhancement for Polymeric Ultrafiltration Membrane Fouling Control PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Direct Biofiltration and Nutrient (phosphorus) Enhancement for Polymeric Ultrafiltration Membrane Fouling Control PDF full book. Access full book title Direct Biofiltration and Nutrient (phosphorus) Enhancement for Polymeric Ultrafiltration Membrane Fouling Control by Ishita Rahman. Download full books in PDF and EPUB format.

Direct Biofiltration and Nutrient (phosphorus) Enhancement for Polymeric Ultrafiltration Membrane Fouling Control

Direct Biofiltration and Nutrient (phosphorus) Enhancement for Polymeric Ultrafiltration Membrane Fouling Control PDF Author: Ishita Rahman
Publisher:
ISBN:
Category :
Languages : en
Pages : 140

Book Description
Membrane filtration is growing in popularity as a viable technology for drinking water treatment to meet high demand and regulatory requirements. While many improvements have been made to the technology in the past decade, fouling continues to be one of the major operational challenges associated with membranes as it increases operating costs and reduces membrane life. Fouling control typically requires some form of pre-treatment. Biofiltration is a “green” technique that can minimize chemical usage and waste during water treatment and is a relatively new application as a pre-treatment for membranes. Proteins and polysaccharides (biopolymers) have been found to contribute most to fouling of low pressure polymeric membranes. Biofiltration has recently been demonstrated as an effective pre-treatment method for reducing biopolymer-associated fouling of this type of membrane (Hallé et al., 2009). Given that the concentration and composition of organic matter in water is variable, there is an opportunity to explore the applicability of this robust technology for different water types. The primary goals of this research were to assess the effectiveness of direct biofiltration in minimizing ultrafiltration polymeric (PVDF) membrane fouling and at the same time evaluate the biofilter development, biofilter performance based on organics removal potential, and the effect of phosphorus addition (as a nutrient) to the biofilter influent. A pilot-scale treatment train was constructed at the Technology Demonstration Facility at the Walkerton Clean Water Centre. It included two parallel dual media (sand/anthracite) biological filters (preceded by roughing filters), followed by an ultrafiltration membrane unit. Experiments were conducted using water from the Saugeen River (Ontario, Canada) whose primary form of carbon is humic material. The biofilters were allowed to acclimate and biofilter performance and organics removal were tested over a fourteen month period, the last four months of which were dedicated to phosphorus enhancement experiments. The membrane fouling experiments started seven months following the start-up of the biofilters, after confirmation of steady-state operation. Biofilter water samples were analyzed for natural organic matter constituents along with other water quality parameters, and biomass quantity and activity in the media were measured. Biomass activity in the biofilter media and biopolymer removal through the biofilter indicated a rapid acclimation period, and also demonstrated similar performance of the parallel biofilters during start-up and steady-state operation. The biofilters achieved 21% removal of the biopolymers on average following acclimation, while reduction of the humic fractions was not observed. A linear relationship between biopolymer removal and its concentration in the river water was observed (first-order process). Membrane fouling experiments were conducted using both untreated and biofiltered river water. The fouling rates were computed by monitoring changes in transmembrane pressure over time. Analysis of the samples with liquid chromatography-organic carbon detection confirmed the significant contribution of biopolymers to irreversible and reversible membrane fouling rates even when only present at low concentrations. During the phosphorus enhancement phase, two different phosphorus doses were fed into the influent of one of the parallel biofilters in order to achieve a target C:N:P ratio of roughly 100:10:1. Although initially (first month of the dosing period) an increase in the removal of dissolved organic carbon and ultraviolet-absorbance was observed in the phosphorus-enhanced biofilter, this was not sustained. Phosphorus addition did not affect biopolymer removal or biomass quantity and activity in the biofilter, and the membrane fouling experiments during this period did not show any significant effect of phosphorus addition.

Direct Biofiltration and Nutrient (phosphorus) Enhancement for Polymeric Ultrafiltration Membrane Fouling Control

Direct Biofiltration and Nutrient (phosphorus) Enhancement for Polymeric Ultrafiltration Membrane Fouling Control PDF Author: Ishita Rahman
Publisher:
ISBN:
Category :
Languages : en
Pages : 140

Book Description
Membrane filtration is growing in popularity as a viable technology for drinking water treatment to meet high demand and regulatory requirements. While many improvements have been made to the technology in the past decade, fouling continues to be one of the major operational challenges associated with membranes as it increases operating costs and reduces membrane life. Fouling control typically requires some form of pre-treatment. Biofiltration is a “green” technique that can minimize chemical usage and waste during water treatment and is a relatively new application as a pre-treatment for membranes. Proteins and polysaccharides (biopolymers) have been found to contribute most to fouling of low pressure polymeric membranes. Biofiltration has recently been demonstrated as an effective pre-treatment method for reducing biopolymer-associated fouling of this type of membrane (Hallé et al., 2009). Given that the concentration and composition of organic matter in water is variable, there is an opportunity to explore the applicability of this robust technology for different water types. The primary goals of this research were to assess the effectiveness of direct biofiltration in minimizing ultrafiltration polymeric (PVDF) membrane fouling and at the same time evaluate the biofilter development, biofilter performance based on organics removal potential, and the effect of phosphorus addition (as a nutrient) to the biofilter influent. A pilot-scale treatment train was constructed at the Technology Demonstration Facility at the Walkerton Clean Water Centre. It included two parallel dual media (sand/anthracite) biological filters (preceded by roughing filters), followed by an ultrafiltration membrane unit. Experiments were conducted using water from the Saugeen River (Ontario, Canada) whose primary form of carbon is humic material. The biofilters were allowed to acclimate and biofilter performance and organics removal were tested over a fourteen month period, the last four months of which were dedicated to phosphorus enhancement experiments. The membrane fouling experiments started seven months following the start-up of the biofilters, after confirmation of steady-state operation. Biofilter water samples were analyzed for natural organic matter constituents along with other water quality parameters, and biomass quantity and activity in the media were measured. Biomass activity in the biofilter media and biopolymer removal through the biofilter indicated a rapid acclimation period, and also demonstrated similar performance of the parallel biofilters during start-up and steady-state operation. The biofilters achieved 21% removal of the biopolymers on average following acclimation, while reduction of the humic fractions was not observed. A linear relationship between biopolymer removal and its concentration in the river water was observed (first-order process). Membrane fouling experiments were conducted using both untreated and biofiltered river water. The fouling rates were computed by monitoring changes in transmembrane pressure over time. Analysis of the samples with liquid chromatography-organic carbon detection confirmed the significant contribution of biopolymers to irreversible and reversible membrane fouling rates even when only present at low concentrations. During the phosphorus enhancement phase, two different phosphorus doses were fed into the influent of one of the parallel biofilters in order to achieve a target C:N:P ratio of roughly 100:10:1. Although initially (first month of the dosing period) an increase in the removal of dissolved organic carbon and ultraviolet-absorbance was observed in the phosphorus-enhanced biofilter, this was not sustained. Phosphorus addition did not affect biopolymer removal or biomass quantity and activity in the biofilter, and the membrane fouling experiments during this period did not show any significant effect of phosphorus addition.

Direct Biofiltration as a Pretreatment to Control Fouling in Ceramic Membranes in Drinking Water Treatment

Direct Biofiltration as a Pretreatment to Control Fouling in Ceramic Membranes in Drinking Water Treatment PDF Author: Jangchuk Tashi
Publisher:
ISBN:
Category : Drinking water
Languages : en
Pages : 151

Book Description
Ceramic membranes have been widely and successfully used in the food and beverage processing industry. Despite their success, ceramic membranes are not commonly employed in drinking water treatment due to their high initial capital cost. Polymeric membranes, on the other hand, have gained widespread use in drinking water treatment in the last few decades due to their ability to meet stringent water quality regulations. Ceramic membranes have a number of advantages over polymeric membranes, which include high chemical and thermal stability, higher fluxes and longer operational life. Advances in membrane technology in recent years coupled with innovative design have made the life cycle cost of implementing ceramic membranes competitive with that of polymeric membranes. This has resulted in a number of drinking water treatment plant installing ceramic membranes as part of the treatment process, especially in Japan. The biggest challenge facing membrane filtration (polymeric or ceramic) is fouling. To control fouling, coagulation prior to ceramic membrane filtration is often implemented and has been shown to be effective in controlling both hydraulically reversible and irreversible fouling. Direct biofiltration without pretreatment (BFWP) (coined by Huck et al., 2015) has been shown to be another effective “green” pretreatment to control fouling in polymeric membranes. High molecular weight natural organic matter (NOM) such as biopolymers have been found to be directly related to the hydraulically reversible fouling and to play a key role in hydraulically irreversible fouling of polymeric membranes and biofiltration is able to reduce the concentration of this NOM fraction. Given the effectiveness of BFWP in controlling fouling in polymeric membranes, there is an opportunity to investigate its applicability to ceramic membranes. Therefore, the goals of this study were to investigate the efficacy of BFWP as a pretreatment to control fouling in ceramic membranes and characterize the fouling of the membranes over time. The effects of Empty Bed Contact Time (EBCT) of the biofilters, membrane materials and pore sizes (Microfiltration (MF) vs. Ultrafiltration (UF)) on the fouling rates were also investigated in the study.

Membrane-based Hybrid Processes for Wastewater Treatment

Membrane-based Hybrid Processes for Wastewater Treatment PDF Author: Maulin P. Shah
Publisher: Elsevier
ISBN: 0128241888
Category : Technology & Engineering
Languages : en
Pages : 727

Book Description
Membrane-Based Hybrid Processes for Wastewater Treatment analyzes and discusses the potential of membrane-based hybrid processes for the treatment of complex industrial wastewater, the recovery of valuable compounds, and water reutilization. In addition, recent and future trends in membrane technology are highlighted. Industrial wastewater contains a large variety of compounds, such as heavy metals, salts and nutrients, which makes its treatment challenging. Thus, the use of conventional water treatment methods is not always effective. Membrane-based hybrid processes have emerged as a promising technology to treat complex industrial wastewater. - Discusses the properties, mechanisms, advantages, limitations and promising solutions of different types of membrane technologies - Addresses the optimization of process parameters - Describes the performance of different membranes - Presents the potential of Nanotechnology to improve the treatment efficiency of wastewater treatment plants (WWTPs) - Covers the application of membrane and membrane-based hybrid treatment technologies for wastewater treatment - Includes forward osmosis, electrodialysis, and diffusion dialysis - Considers hybrid membrane systems expanded to cover zero liquid discharge, salt recovery, and removal of trace contaminants

Recent Progress in Slow Sand and Alternative Biofiltration Processes

Recent Progress in Slow Sand and Alternative Biofiltration Processes PDF Author: Rolf Gimbel
Publisher: IWA Publishing
ISBN: 1843391201
Category : Science
Languages : en
Pages : 580

Book Description
Slow sand filtration is typically cited as being the first "engineered" process in drinking-water treatment. Proven modifications to the conventional slow sand filtration process, the awareness of induced biological activity in riverbank filtration systems, and the growth of oxidant-induced biological removals in more rapid-rate filters (e.g. biological activated carbon) demonstrate the renaissance of biofiltration as a treatment process that remains viable for both small, rural communities and major cities. Biofiltration is expected to become even more common in the future as efforts intensify to decrease the presence of disease-causing microorganisms and disinfection by-products in drinking water, to minimize microbial regrowth potential in distribution systems, and where operator skill levels are emphasized. Recent Progress in Slow Sand and Alternative Biofiltration Processes provides a state-of-the-art assessment on a variety of biofiltration systems from studies conducted around the world. The authors collectively represent a perspective from 23 countries and include academics, biofiltration system users, designers, and manufacturers. It provides an up-to-date perspective on the physical, chemical, biological, and operational factors affecting the performance of slow sand filtration (SSF), riverbank filtration (RBF), soil-aquifer treatment (SAT), and biological activated carbon (BAC) processes. The main themes are: comparable overviews of biofiltration systems; slow sand filtration process behavior, treatment performance and process developments; and alternative biofiltration process behaviors, treatment performances, and process developments.

Refractory Organic Substances in the Environment

Refractory Organic Substances in the Environment PDF Author: Fritz Hartmann Frimmel
Publisher: John Wiley & Sons
ISBN: 3527614443
Category : Science
Languages : en
Pages : 579

Book Description
Refractory organic substances (ROS) are an essential part of the biogeochemical carbon cycle. Wherever there is life on earth, there will also be ROS in the form of poorly biodegradable leftovers of organisms and as a source for new life. Furthermore, it is now beyond doubt that ROS are closely related to the carbon intensity identified as one of the driving forces in the dynamics of green house gas emission, such that ROS play a key role in sustainable development. 'Refractory Organic Substances in the Environment' provides the results of six years of top-priority research, funded by the Deutsche Forschungsgemeinschaft (DFG). This research program investigated the structure and function of ROS in different parts of the environment, from a chemical, physical, biological, and soil scientific point of view. It included the first systematic study of a set of reference samples from Central Europe, originating from a bog lake, soil seepage water, groundwater, and from the wastewaters of a brown coal processing plant and a secondary effluent. Thus, this work not only highlights the structural features obtained from the application of advanced analytical tools, but also the function in anthropogenically influenced aquatic systems and soils. Of special interest to students and researchers in life sciences.

Ecology of Humic Substances in Freshwaters

Ecology of Humic Substances in Freshwaters PDF Author: Christian Steinberg
Publisher: Springer Science & Business Media
ISBN: 9783540439226
Category : Science
Languages : en
Pages : 452

Book Description
Humic Substances color all waters more or less brown. Their concentrations exceed all carbon of living organisms by at least one order of magnitude. Opposite to former paradigms, they participate in almost any metabolic pathway. They protect against UV-irradation, enable indirect photolysis and, thus, purify hazardous chemicals, they provide inorganic and organic nutrients, may form cryptic genes with DNA and dampen metabolic fluctuations. More recently they can increase adverse effects of hazardous chemicals and they can directly interfere with organisms. The book tries to relate effects to structural features.

Sewage Treatment Plants

Sewage Treatment Plants PDF Author: Katerina Stamatelatou
Publisher: IWA Publishing
ISBN: 1780405014
Category : Science
Languages : en
Pages : 376

Book Description
Sewage Treatment Plants: Economic Evaluation of Innovative Technologies for Energy Efficiency aims to show how cost saving can be achieved in sewage treatment plants through implementation of novel, energy efficient technologies or modification of the conventional, energy demanding treatment facilities towards the concept of energy streamlining. The book brings together knowledge from Engineering, Economics, Utility Management and Practice and helps to provide a better understanding of the real economic value with methodologies and practices about innovative energy technologies and policies in sewage treatment plants.

Process Design Manual for Nitrogen Control

Process Design Manual for Nitrogen Control PDF Author: United States. Environmental Protection Agency. Office of Technology Transfer
Publisher:
ISBN:
Category : Nitrification
Languages : en
Pages : 466

Book Description


Activated Sludge - 100 Years and Counting

Activated Sludge - 100 Years and Counting PDF Author: David Jenkins
Publisher: IWA Publishing
ISBN: 178040493X
Category : Science
Languages : en
Pages : 460

Book Description
Activated Sludge - 100 Years and Counting covers the current status of all aspects of the activated sludge process and looks forward to its further development in the future. It celebrates 100 years of the Activated Sludge process, from the time that the early developers presented the seminal works that led to its eventual worldwide adoption. The book assembles contributions from renowned world leaders in activated sludge research, development, technology and application. The objective of the book is to summarise the knowledge of all aspects of the activated sludge process and to present and discuss anticipated future developments. The book comprises invited papers that were delivered at the conference "Activated Sludge...100 Years and Counting!", held in Essen, Germany, June 12th to 14th, 2014. Activated Sludge - 100 Years and Counting is of interest to researchers, engineers, designers, operations specialists, and governmental agencies from a wide range of disciplines associated with all aspects of the activated sludge process. Authors: David Jenkins, University of California at Berkeley, USA, Jiri Wanner, Institute of Chemical Technology, Prague, Czech Republic.

TECHNEAU

TECHNEAU PDF Author: Christian Kazner
Publisher: IWA Publishing
ISBN: 1843392755
Category : Science
Languages : en
Pages : 481

Book Description
The best papers from the three-day conference on Safe Drinking Water from Source to Tap June 2009 in Maastricht are published in this book covering the themes of challenges of the water sector and adaptive strategies, treatment, distribution, risk assessment and risk management, sensors and monitoring, small scale systems, simulation, alternative water supply & sources, consumer involvement, and future drinking water. Worldwide, the water supply sector is facing tremendous challenges. Every new emerging contaminants and pathogens and aging infrastructures that are vulnerable for deliberate contamination pose a threat to the quality of water supplies. Shortage of good quality and readily treatable resources is increasing due to global warming, urbanisation and pollution from agriculture and industry. Regulators and consumers are becoming more demanding. Techneau - the largest European project on drinking water - addresses these challenges by developing adaptive supply system options and new and improved treatment and monitoring technologies. Future system options to be studied are flexible, small scale and multi-source supplies, utilising non conventional resources like brackish ground water, treated wastewater and urban groundwater.