Dimension Reduction and Clustering Using Non-Elliptical Mixtures PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Dimension Reduction and Clustering Using Non-Elliptical Mixtures PDF full book. Access full book title Dimension Reduction and Clustering Using Non-Elliptical Mixtures by Katherine Morris. Download full books in PDF and EPUB format.

Dimension Reduction and Clustering Using Non-Elliptical Mixtures

Dimension Reduction and Clustering Using Non-Elliptical Mixtures PDF Author: Katherine Morris
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Dimension Reduction and Clustering Using Non-Elliptical Mixtures

Dimension Reduction and Clustering Using Non-Elliptical Mixtures PDF Author: Katherine Morris
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Dimension Reduction for Model-based Clustering Via Mixtures of Multivariate T-Distributions

Dimension Reduction for Model-based Clustering Via Mixtures of Multivariate T-Distributions PDF Author: Katherine Morris
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Mixture Models for Clustering and Dimension Reduction

Mixture Models for Clustering and Dimension Reduction PDF Author: Jakob Jozef Verbeek
Publisher:
ISBN: 9789057761256
Category :
Languages : en
Pages : 162

Book Description


Advances in Knowledge Discovery and Data Mining

Advances in Knowledge Discovery and Data Mining PDF Author: Qiang Yang
Publisher: Springer
ISBN: 303016148X
Category : Computers
Languages : en
Pages : 654

Book Description
The three-volume set LNAI 11439, 11440, and 11441 constitutes the thoroughly refereed proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2019, held in Macau, China, in April 2019. The 137 full papers presented were carefully reviewed and selected from 542 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, visualization, decision-making systems, and the emerging applications. They are organized in the following topical sections: classification and supervised learning; text and opinion mining; spatio-temporal and stream data mining; factor and tensor analysis; healthcare, bioinformatics and related topics; clustering and anomaly detection; deep learning models and applications; sequential pattern mining; weakly supervised learning; recommender system; social network and graph mining; data pre-processing and feature selection; representation learning and embedding; mining unstructured and semi-structured data; behavioral data mining; visual data mining; and knowledge graph and interpretable data mining.

Mixture Model-Based Classification

Mixture Model-Based Classification PDF Author: Paul D. McNicholas
Publisher: CRC Press
ISBN: 1315356112
Category : Mathematics
Languages : en
Pages : 244

Book Description
"This is a great overview of the field of model-based clustering and classification by one of its leading developers. McNicholas provides a resource that I am certain will be used by researchers in statistics and related disciplines for quite some time. The discussion of mixtures with heavy tails and asymmetric distributions will place this text as the authoritative, modern reference in the mixture modeling literature." (Douglas Steinley, University of Missouri) Mixture Model-Based Classification is the first monograph devoted to mixture model-based approaches to clustering and classification. This is both a book for established researchers and newcomers to the field. A history of mixture models as a tool for classification is provided and Gaussian mixtures are considered extensively, including mixtures of factor analyzers and other approaches for high-dimensional data. Non-Gaussian mixtures are considered, from mixtures with components that parameterize skewness and/or concentration, right up to mixtures of multiple scaled distributions. Several other important topics are considered, including mixture approaches for clustering and classification of longitudinal data as well as discussion about how to define a cluster Paul D. McNicholas is the Canada Research Chair in Computational Statistics at McMaster University, where he is a Professor in the Department of Mathematics and Statistics. His research focuses on the use of mixture model-based approaches for classification, with particular attention to clustering applications, and he has published extensively within the field. He is an associate editor for several journals and has served as a guest editor for a number of special issues on mixture models.

Analyzing Microarray Gene Expression Data

Analyzing Microarray Gene Expression Data PDF Author: Geoffrey J. McLachlan
Publisher: John Wiley & Sons
ISBN: 0471726125
Category : Mathematics
Languages : en
Pages : 366

Book Description
A multi-discipline, hands-on guide to microarray analysis of biological processes Analyzing Microarray Gene Expression Data provides a comprehensive review of available methodologies for the analysis of data derived from the latest DNA microarray technologies. Designed for biostatisticians entering the field of microarray analysis as well as biologists seeking to more effectively analyze their own experimental data, the text features a unique interdisciplinary approach and a combined academic and practical perspective that offers readers the most complete and applied coverage of the subject matter to date. Following a basic overview of the biological and technical principles behind microarray experimentation, the text provides a look at some of the most effective tools and procedures for achieving optimum reliability and reproducibility of research results, including: An in-depth account of the detection of genes that are differentially expressed across a number of classes of tissues Extensive coverage of both cluster analysis and discriminant analysis of microarray data and the growing applications of both methodologies A model-based approach to cluster analysis, with emphasis on the use of the EMMIX-GENE procedure for the clustering of tissue samples The latest data cleaning and normalization procedures The uses of microarray expression data for providing important prognostic information on the outcome of disease

Feature Engineering and Selection

Feature Engineering and Selection PDF Author: Max Kuhn
Publisher: CRC Press
ISBN: 1351609467
Category : Business & Economics
Languages : en
Pages : 266

Book Description
The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.

Machine Learning for Physics and Astronomy

Machine Learning for Physics and Astronomy PDF Author: Viviana Acquaviva
Publisher: Princeton University Press
ISBN: 0691206414
Category : Computers
Languages : en
Pages : 280

Book Description
A hands-on introduction to machine learning and its applications to the physical sciences As the size and complexity of data continue to grow exponentially across the physical sciences, machine learning is helping scientists to sift through and analyze this information while driving breathtaking advances in quantum physics, astronomy, cosmology, and beyond. This incisive textbook covers the basics of building, diagnosing, optimizing, and deploying machine learning methods to solve research problems in physics and astronomy, with an emphasis on critical thinking and the scientific method. Using a hands-on approach to learning, Machine Learning for Physics and Astronomy draws on real-world, publicly available data as well as examples taken directly from the frontiers of research, from identifying galaxy morphology from images to identifying the signature of standard model particles in simulations at the Large Hadron Collider. Introduces readers to best practices in data-driven problem-solving, from preliminary data exploration and cleaning to selecting the best method for a given task Each chapter is accompanied by Jupyter Notebook worksheets in Python that enable students to explore key concepts Includes a wealth of review questions and quizzes Ideal for advanced undergraduate and early graduate students in STEM disciplines such as physics, computer science, engineering, and applied mathematics Accessible to self-learners with a basic knowledge of linear algebra and calculus Slides and assessment questions (available only to instructors)

Mathematical, Computational and Experimental T Cell Immunology

Mathematical, Computational and Experimental T Cell Immunology PDF Author: Carmen Molina-ParĂ­s
Publisher: Springer Nature
ISBN: 3030572048
Category : Medical
Languages : en
Pages : 300

Book Description
Mathematical, statistical, and computational methods enable multi-disciplinary approaches that catalyse discovery. Together with experimental methods, they identify key hypotheses, define measurable observables and reconcile disparate results. This volume collects a representative sample of studies in T cell immunology that illustrate the benefits of modelling-experimental collaborations and which have proven valuable or even ground-breaking. Studies include thymic selection, T cell repertoire diversity, T cell homeostasis in health and disease, T cell-mediated immune responses, T cell memory, T cell signalling and analysis of flow cytometry data sets. Contributing authors are leading scientists in the area of experimental, computational, and mathematical immunology. Each chapter includes state-of-the-art and pedagogical content, making this book accessible to readers with limited experience in T cell immunology and/or mathematical and computational modelling.

High-Dimensional Non-Gaussian Data Clustering Using Variational Learning of Mixture Models

High-Dimensional Non-Gaussian Data Clustering Using Variational Learning of Mixture Models PDF Author: Wentao Fan
Publisher:
ISBN:
Category :
Languages : en
Pages : 133

Book Description
Clustering has been the topic of extensive research in the past. The main concern is to automatically divide a given data set into different clusters such that vectors of the same cluster are as similar as possible and vectors of different clusters are as different as possible. Finite mixture models have been widely used for clustering since they have the advantages of being able to integrate prior knowledge about the data and to address the problem of unsupervised learning in a formal way. A crucial starting point when adopting mixture models is the choice of the components densities. In this context, the well-known Gaussian distribution has been widely used. However, the deployment of the Gaussian mixture implies implicitly clustering based on the minimization of Euclidean distortions which may yield to poor results in several real applications where the per-components densities are not Gaussian. Recent works have shown that other models such as the Dirichlet, generalized Dirichlet and Beta-Liouville mixtures may provide better clustering results in applications containing non-Gaussian data, especially those involving proportional data (or normalized histograms) which are naturally generated by many applications. Two other challenging aspects that should also be addressed when considering mixture models are: how to determine the model's complexity (i.e. the number of mixture components) and how to estimate the model's parameters. Fortunately, both problems can be tackled simultaneously within a principled elegant learning framework namely variational inference. The main idea of variational inference is to approximate the model posterior distribution by minimizing the Kullback-Leibler divergence between the exact (or true) posterior and an approximating distribution. Recently, variational inference has provided good generalization performance and computational tractability in many applications including learning mixture models. In this thesis, we propose several approaches for high-dimensional non-Gaussian data clustering based on various mixture models such as Dirichlet, generalized Dirichlet and Beta-Liouville. These mixture models are learned using variational inference which main advantages are computational efficiency and guaranteed convergence. More specifically, our contributions are four-fold. Firstly, we develop a variational inference algorithm for learning the finite Dirichlet mixture model, where model parameters and the model complexity can be determined automatically and simultaneously as part of the Bayesian inference procedure; Secondly, an unsupervised feature selection scheme is integrated with finite generalized Dirichlet mixture model for clustering high-dimensional non-Gaussian data; Thirdly, we extend the proposed finite generalized mixture model to the infinite case using a nonparametric Bayesian framework known as Dirichlet process, so that the difficulty of choosing the appropriate number of clusters is sidestepped by assuming that there are an infinite number of mixture components; Finally, we propose an online learning framework to learn a Dirichlet process mixture of Beta-Liouville distributions (i.e. an infinite Beta-Liouville mixture model), which is more suitable when dealing with sequential or large scale data in contrast to batch learning algorithm. The effectiveness of our approaches is evaluated using both synthetic and real-life challenging applications such as image databases categorization, anomaly intrusion detection, human action videos categorization, image annotation, facial expression recognition, behavior recognition, and dynamic textures clustering.