Author: Pierre E. Conner
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 196
Book Description
This research tract contains an exposition of our research on bordism and differentiable periodic maps done in the period 1960-62. The research grew out of the conviction, not ours alone, that the subject of transformation groups is in need of a large infusion of the modern methods of algebraic topology. This conviction we owe at least in part to Armand Borel; in particular Borel has maintained the desirability of methods in transformation groups that use differentiability in a key fashion [9, Introduction], and that is what we try to supply here. We do not try to relate our work to Smith theory, the homological study of periodic maps due to such a large extent to P. A. Smith; for a modern development of that subject which expands it greatly see the Borel Seminar notes [9]. It appears to us that our work is independent of Smith theory, but in part inspired by it. We owe a particular debt to G. D. Mostow, who pointed out to us some time ago that it followed from Smith theory that an involution on a compact manifold, or a map of prime period [italic lowercase]p on a compact orientable manifold, could not have precisely one fixed point. It was this fact that led us to believe it worthwhile to apply cobordism to periodic maps.
Differentiable Periodic Maps
Author: Pierre E. Conner
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 196
Book Description
This research tract contains an exposition of our research on bordism and differentiable periodic maps done in the period 1960-62. The research grew out of the conviction, not ours alone, that the subject of transformation groups is in need of a large infusion of the modern methods of algebraic topology. This conviction we owe at least in part to Armand Borel; in particular Borel has maintained the desirability of methods in transformation groups that use differentiability in a key fashion [9, Introduction], and that is what we try to supply here. We do not try to relate our work to Smith theory, the homological study of periodic maps due to such a large extent to P. A. Smith; for a modern development of that subject which expands it greatly see the Borel Seminar notes [9]. It appears to us that our work is independent of Smith theory, but in part inspired by it. We owe a particular debt to G. D. Mostow, who pointed out to us some time ago that it followed from Smith theory that an involution on a compact manifold, or a map of prime period [italic lowercase]p on a compact orientable manifold, could not have precisely one fixed point. It was this fact that led us to believe it worthwhile to apply cobordism to periodic maps.
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 196
Book Description
This research tract contains an exposition of our research on bordism and differentiable periodic maps done in the period 1960-62. The research grew out of the conviction, not ours alone, that the subject of transformation groups is in need of a large infusion of the modern methods of algebraic topology. This conviction we owe at least in part to Armand Borel; in particular Borel has maintained the desirability of methods in transformation groups that use differentiability in a key fashion [9, Introduction], and that is what we try to supply here. We do not try to relate our work to Smith theory, the homological study of periodic maps due to such a large extent to P. A. Smith; for a modern development of that subject which expands it greatly see the Borel Seminar notes [9]. It appears to us that our work is independent of Smith theory, but in part inspired by it. We owe a particular debt to G. D. Mostow, who pointed out to us some time ago that it followed from Smith theory that an involution on a compact manifold, or a map of prime period [italic lowercase]p on a compact orientable manifold, could not have precisely one fixed point. It was this fact that led us to believe it worthwhile to apply cobordism to periodic maps.
Introduction to Differential Topology
Author: Theodor Bröcker
Publisher: Cambridge University Press
ISBN: 9780521284707
Category : Mathematics
Languages : en
Pages : 176
Book Description
This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.
Publisher: Cambridge University Press
ISBN: 9780521284707
Category : Mathematics
Languages : en
Pages : 176
Book Description
This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.
Singularities of Differentiable Maps
Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 1461251540
Category : Mathematics
Languages : en
Pages : 390
Book Description
... there is nothing so enthralling, so grandiose, nothing that stuns or captivates the human soul quite so much as a first course in a science. After the first five or six lectures one already holds the brightest hopes, already sees oneself as a seeker after truth. I too have wholeheartedly pursued science passionately, as one would a beloved woman. I was a slave, and sought no other sun in my life. Day and night I crammed myself, bending my back, ruining myself over my books; I wept when I beheld others exploiting science fot personal gain. But I was not long enthralled. The truth is every science has a beginning, but never an end - they go on for ever like periodic fractions. Zoology, for example, has discovered thirty-five thousand forms of life ... A. P. Chekhov. "On the road" In this book a start is made to the "zoology" of the singularities of differentiable maps. This theory is a young branch of analysis which currently occupies a central place in mathematics; it is the crossroads of paths leading from very abstract corners of mathematics (such as algebraic and differential geometry and topology, Lie groups and algebras, complex manifolds, commutative algebra and the like) to the most applied areas (such as differential equations and dynamical systems, optimal control, the theory of bifurcations and catastrophes, short-wave and saddle-point asymptotics and geometrical and wave optics).
Publisher: Springer Science & Business Media
ISBN: 1461251540
Category : Mathematics
Languages : en
Pages : 390
Book Description
... there is nothing so enthralling, so grandiose, nothing that stuns or captivates the human soul quite so much as a first course in a science. After the first five or six lectures one already holds the brightest hopes, already sees oneself as a seeker after truth. I too have wholeheartedly pursued science passionately, as one would a beloved woman. I was a slave, and sought no other sun in my life. Day and night I crammed myself, bending my back, ruining myself over my books; I wept when I beheld others exploiting science fot personal gain. But I was not long enthralled. The truth is every science has a beginning, but never an end - they go on for ever like periodic fractions. Zoology, for example, has discovered thirty-five thousand forms of life ... A. P. Chekhov. "On the road" In this book a start is made to the "zoology" of the singularities of differentiable maps. This theory is a young branch of analysis which currently occupies a central place in mathematics; it is the crossroads of paths leading from very abstract corners of mathematics (such as algebraic and differential geometry and topology, Lie groups and algebras, complex manifolds, commutative algebra and the like) to the most applied areas (such as differential equations and dynamical systems, optimal control, the theory of bifurcations and catastrophes, short-wave and saddle-point asymptotics and geometrical and wave optics).
Periodic Differential Equations in the Plane
Author: Rafael Ortega
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110551160
Category : Mathematics
Languages : en
Pages : 200
Book Description
Periodic differential equations appear in many contexts such as in the theory of nonlinear oscillators, in celestial mechanics, or in population dynamics with seasonal effects. The most traditional approach to study these equations is based on the introduction of small parameters, but the search of nonlocal results leads to the application of several topological tools. Examples are fixed point theorems, degree theory, or bifurcation theory. These well-known methods are valid for equations of arbitrary dimension and they are mainly employed to prove the existence of periodic solutions. Following the approach initiated by Massera, this book presents some more delicate techniques whose validity is restricted to two dimensions. These typically produce additional dynamical information such as the instability of periodic solutions, the convergence of all solutions to periodic solutions, or connections between the number of harmonic and subharmonic solutions. The qualitative study of periodic planar equations leads naturally to a class of discrete dynamical systems generated by homeomorphisms or embeddings of the plane. To study these maps, Brouwer introduced the notion of a translation arc, somehow mimicking the notion of an orbit in continuous dynamical systems. The study of the properties of these translation arcs is full of intuition and often leads to "non-rigorous proofs". In the book, complete proofs following ideas developed by Brown are presented and the final conclusion is the Arc Translation Lemma, a counterpart of the Poincaré–Bendixson theorem for discrete dynamical systems. Applications to differential equations and discussions on the topology of the plane are the two themes that alternate throughout the five chapters of the book.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110551160
Category : Mathematics
Languages : en
Pages : 200
Book Description
Periodic differential equations appear in many contexts such as in the theory of nonlinear oscillators, in celestial mechanics, or in population dynamics with seasonal effects. The most traditional approach to study these equations is based on the introduction of small parameters, but the search of nonlocal results leads to the application of several topological tools. Examples are fixed point theorems, degree theory, or bifurcation theory. These well-known methods are valid for equations of arbitrary dimension and they are mainly employed to prove the existence of periodic solutions. Following the approach initiated by Massera, this book presents some more delicate techniques whose validity is restricted to two dimensions. These typically produce additional dynamical information such as the instability of periodic solutions, the convergence of all solutions to periodic solutions, or connections between the number of harmonic and subharmonic solutions. The qualitative study of periodic planar equations leads naturally to a class of discrete dynamical systems generated by homeomorphisms or embeddings of the plane. To study these maps, Brouwer introduced the notion of a translation arc, somehow mimicking the notion of an orbit in continuous dynamical systems. The study of the properties of these translation arcs is full of intuition and often leads to "non-rigorous proofs". In the book, complete proofs following ideas developed by Brown are presented and the final conclusion is the Arc Translation Lemma, a counterpart of the Poincaré–Bendixson theorem for discrete dynamical systems. Applications to differential equations and discussions on the topology of the plane are the two themes that alternate throughout the five chapters of the book.
An Introduction to Infinite-Dimensional Differential Geometry
Author: Alexander Schmeding
Publisher: Cambridge University Press
ISBN: 1316514889
Category : Mathematics
Languages : en
Pages : 283
Book Description
Introduces foundational concepts in infinite-dimensional differential geometry beyond Banach manifolds, showcasing its modern applications.
Publisher: Cambridge University Press
ISBN: 1316514889
Category : Mathematics
Languages : en
Pages : 283
Book Description
Introduces foundational concepts in infinite-dimensional differential geometry beyond Banach manifolds, showcasing its modern applications.
Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces
Author: Mikhail I. Kamenskii
Publisher: Walter de Gruyter
ISBN: 3110870894
Category : Mathematics
Languages : en
Pages : 245
Book Description
The theory of set-valued maps and of differential inclusion is developed in recent years both as a field of his own and as an approach to control theory. The book deals with the theory of semilinear differential inclusions in infinite dimensional spaces. In this setting, problems of interest to applications do not suppose neither convexity of the map or compactness of the multi-operators. These assumption implies the development of the theory of measure of noncompactness and the construction of a degree theory for condensing mapping. Of particular interest is the approach to the case when the linear part is a generator of a condensing, strongly continuous semigroup. In this context, the existence of solutions for the Cauchy and periodic problems are proved as well as the topological properties of the solution sets. Examples of applications to the control of transmission line and to hybrid systems are presented.
Publisher: Walter de Gruyter
ISBN: 3110870894
Category : Mathematics
Languages : en
Pages : 245
Book Description
The theory of set-valued maps and of differential inclusion is developed in recent years both as a field of his own and as an approach to control theory. The book deals with the theory of semilinear differential inclusions in infinite dimensional spaces. In this setting, problems of interest to applications do not suppose neither convexity of the map or compactness of the multi-operators. These assumption implies the development of the theory of measure of noncompactness and the construction of a degree theory for condensing mapping. Of particular interest is the approach to the case when the linear part is a generator of a condensing, strongly continuous semigroup. In this context, the existence of solutions for the Cauchy and periodic problems are proved as well as the topological properties of the solution sets. Examples of applications to the control of transmission line and to hybrid systems are presented.
Lectures on Analytic Differential Equations
Author: I︠U︡. S. Ilʹi︠a︡shenko
Publisher: American Mathematical Soc.
ISBN: 0821836676
Category : Mathematics
Languages : en
Pages : 641
Book Description
The book combines the features of a graduate-level textbook with those of a research monograph and survey of the recent results on analysis and geometry of differential equations in the real and complex domain. As a graduate textbook, it includes self-contained, sometimes considerably simplified demonstrations of several fundamental results, which previously appeared only in journal publications (desingularization of planar analytic vector fields, existence of analytic separatrices, positive and negative results on the Riemann-Hilbert problem, Ecalle-Voronin and Martinet-Ramis moduli, solution of the Poincare problem on the degree of an algebraic separatrix, etc.). As a research monograph, it explores in a systematic way the algebraic decidability of local classification problems, rigidity of holomorphic foliations, etc. Each section ends with a collection of problems, partly intended to help the reader to gain understanding and experience with the material, partly drafting demonstrations of the mor The exposition of the book is mostly geometric, though the algebraic side of the constructions is also prominently featured. on several occasions the reader is introduced to adjacent areas, such as intersection theory for divisors on the projective plane or geometric theory of holomorphic vector bundles with meromorphic connections. The book provides the reader with the principal tools of the modern theory of analytic differential equations and intends to serve as a standard source for references in this area.
Publisher: American Mathematical Soc.
ISBN: 0821836676
Category : Mathematics
Languages : en
Pages : 641
Book Description
The book combines the features of a graduate-level textbook with those of a research monograph and survey of the recent results on analysis and geometry of differential equations in the real and complex domain. As a graduate textbook, it includes self-contained, sometimes considerably simplified demonstrations of several fundamental results, which previously appeared only in journal publications (desingularization of planar analytic vector fields, existence of analytic separatrices, positive and negative results on the Riemann-Hilbert problem, Ecalle-Voronin and Martinet-Ramis moduli, solution of the Poincare problem on the degree of an algebraic separatrix, etc.). As a research monograph, it explores in a systematic way the algebraic decidability of local classification problems, rigidity of holomorphic foliations, etc. Each section ends with a collection of problems, partly intended to help the reader to gain understanding and experience with the material, partly drafting demonstrations of the mor The exposition of the book is mostly geometric, though the algebraic side of the constructions is also prominently featured. on several occasions the reader is introduced to adjacent areas, such as intersection theory for divisors on the projective plane or geometric theory of holomorphic vector bundles with meromorphic connections. The book provides the reader with the principal tools of the modern theory of analytic differential equations and intends to serve as a standard source for references in this area.
Differential Equations and Dynamical Systems
Author: Lawrence Perko
Publisher: Springer Science & Business Media
ISBN: 1461300037
Category : Mathematics
Languages : en
Pages : 566
Book Description
This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations.
Publisher: Springer Science & Business Media
ISBN: 1461300037
Category : Mathematics
Languages : en
Pages : 566
Book Description
This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations.
Differential Dynamical Systems, Revised Edition
Author: James D. Meiss
Publisher: SIAM
ISBN: 161197464X
Category : Mathematics
Languages : en
Pages : 410
Book Description
Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.
Publisher: SIAM
ISBN: 161197464X
Category : Mathematics
Languages : en
Pages : 410
Book Description
Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.
Period Mappings and Period Domains
Author: James Carlson
Publisher: Cambridge University Press
ISBN: 1108422624
Category : Mathematics
Languages : en
Pages : 577
Book Description
An introduction to Griffiths' theory of period maps and domains, focused on algebraic, group-theoretic and differential geometric aspects.
Publisher: Cambridge University Press
ISBN: 1108422624
Category : Mathematics
Languages : en
Pages : 577
Book Description
An introduction to Griffiths' theory of period maps and domains, focused on algebraic, group-theoretic and differential geometric aspects.