Author: Michal Kisielewicz
Publisher: Springer
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 268
Book Description
Differential Inclusions and Optimal Control
Author: Michal Kisielewicz
Publisher: Springer
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 268
Book Description
Publisher: Springer
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 268
Book Description
Stochastic Differential Inclusions and Applications
Author: Michał Kisielewicz
Publisher: Springer Science & Business Media
ISBN: 146146756X
Category : Mathematics
Languages : en
Pages : 295
Book Description
This book aims to further develop the theory of stochastic functional inclusions and their applications for describing the solutions of the initial and boundary value problems for partial differential inclusions. The self-contained volume is designed to introduce the reader in a systematic fashion, to new methods of the stochastic optimal control theory from the very beginning. The exposition contains detailed proofs and uses new and original methods to characterize the properties of stochastic functional inclusions that, up to the present time, have only been published recently by the author. The work is divided into seven chapters, with the first two acting as an introduction, containing selected material dealing with point- and set-valued stochastic processes, and the final two devoted to applications and optimal control problems. The book presents recent and pressing issues in stochastic processes, control, differential games, optimization and their application in finance, manufacturing, queueing networks, and climate control. Written by an award-winning author in the field of stochastic differential inclusions and their application to control theory, This book is intended for students and researchers in mathematics and applications; particularly those studying optimal control theory. It is also highly relevant for students of economics and engineering. The book can also be used as a reference on stochastic differential inclusions. Knowledge of select topics in analysis and probability theory are required.
Publisher: Springer Science & Business Media
ISBN: 146146756X
Category : Mathematics
Languages : en
Pages : 295
Book Description
This book aims to further develop the theory of stochastic functional inclusions and their applications for describing the solutions of the initial and boundary value problems for partial differential inclusions. The self-contained volume is designed to introduce the reader in a systematic fashion, to new methods of the stochastic optimal control theory from the very beginning. The exposition contains detailed proofs and uses new and original methods to characterize the properties of stochastic functional inclusions that, up to the present time, have only been published recently by the author. The work is divided into seven chapters, with the first two acting as an introduction, containing selected material dealing with point- and set-valued stochastic processes, and the final two devoted to applications and optimal control problems. The book presents recent and pressing issues in stochastic processes, control, differential games, optimization and their application in finance, manufacturing, queueing networks, and climate control. Written by an award-winning author in the field of stochastic differential inclusions and their application to control theory, This book is intended for students and researchers in mathematics and applications; particularly those studying optimal control theory. It is also highly relevant for students of economics and engineering. The book can also be used as a reference on stochastic differential inclusions. Knowledge of select topics in analysis and probability theory are required.
Introduction to the Theory of Differential Inclusions
Author: Georgi V. Smirnov
Publisher: American Mathematical Society
ISBN: 1470468549
Category : Mathematics
Languages : en
Pages : 226
Book Description
A differential inclusion is a relation of the form $dot x in F(x)$, where $F$ is a set-valued map associating any point $x in R^n$ with a set $F(x) subset R^n$. As such, the notion of a differential inclusion generalizes the notion of an ordinary differential equation of the form $dot x = f(x)$. Therefore, all problems usually studied in the theory of ordinary differential equations (existence and continuation of solutions, dependence on initial conditions and parameters, etc.) can be studied for differential inclusions as well. Since a differential inclusion usually has many solutions starting at a given point, new types of problems arise, such as investigation of topological properties of the set of solutions, selection of solutions with given properties, and many others. Differential inclusions play an important role as a tool in the study of various dynamical processes described by equations with a discontinuous or multivalued right-hand side, occurring, in particular, in the study of dynamics of economical, social, and biological macrosystems. They also are very useful in proving existence theorems in control theory. This text provides an introductory treatment to the theory of differential inclusions. The reader is only required to know ordinary differential equations, theory of functions, and functional analysis on the elementary level. Chapter 1 contains a brief introduction to convex analysis. Chapter 2 considers set-valued maps. Chapter 3 is devoted to the Mordukhovich version of nonsmooth analysis. Chapter 4 contains the main existence theorems and gives an idea of the approximation techniques used throughout the text. Chapter 5 is devoted to the viability problem, i.e., the problem of selection of a solution to a differential inclusion that is contained in a given set. Chapter 6 considers the controllability problem. Chapter 7 discusses extremal problems for differential inclusions. Chapter 8 presents stability theory, and Chapter 9 deals with the stabilization problem.
Publisher: American Mathematical Society
ISBN: 1470468549
Category : Mathematics
Languages : en
Pages : 226
Book Description
A differential inclusion is a relation of the form $dot x in F(x)$, where $F$ is a set-valued map associating any point $x in R^n$ with a set $F(x) subset R^n$. As such, the notion of a differential inclusion generalizes the notion of an ordinary differential equation of the form $dot x = f(x)$. Therefore, all problems usually studied in the theory of ordinary differential equations (existence and continuation of solutions, dependence on initial conditions and parameters, etc.) can be studied for differential inclusions as well. Since a differential inclusion usually has many solutions starting at a given point, new types of problems arise, such as investigation of topological properties of the set of solutions, selection of solutions with given properties, and many others. Differential inclusions play an important role as a tool in the study of various dynamical processes described by equations with a discontinuous or multivalued right-hand side, occurring, in particular, in the study of dynamics of economical, social, and biological macrosystems. They also are very useful in proving existence theorems in control theory. This text provides an introductory treatment to the theory of differential inclusions. The reader is only required to know ordinary differential equations, theory of functions, and functional analysis on the elementary level. Chapter 1 contains a brief introduction to convex analysis. Chapter 2 considers set-valued maps. Chapter 3 is devoted to the Mordukhovich version of nonsmooth analysis. Chapter 4 contains the main existence theorems and gives an idea of the approximation techniques used throughout the text. Chapter 5 is devoted to the viability problem, i.e., the problem of selection of a solution to a differential inclusion that is contained in a given set. Chapter 6 considers the controllability problem. Chapter 7 discusses extremal problems for differential inclusions. Chapter 8 presents stability theory, and Chapter 9 deals with the stabilization problem.
Approximation and Optimization of Discrete and Differential Inclusions
Author: Elimhan N Mahmudov
Publisher: Elsevier
ISBN: 0123884284
Category : Mathematics
Languages : en
Pages : 396
Book Description
Optimal control theory has numerous applications in both science and engineering. This book presents basic concepts and principles of mathematical programming in terms of set-valued analysis and develops a comprehensive optimality theory of problems described by ordinary and partial differential inclusions. In addition to including well-recognized results of variational analysis and optimization, the book includes a number of new and important ones Includes practical examples
Publisher: Elsevier
ISBN: 0123884284
Category : Mathematics
Languages : en
Pages : 396
Book Description
Optimal control theory has numerous applications in both science and engineering. This book presents basic concepts and principles of mathematical programming in terms of set-valued analysis and develops a comprehensive optimality theory of problems described by ordinary and partial differential inclusions. In addition to including well-recognized results of variational analysis and optimization, the book includes a number of new and important ones Includes practical examples
Differential Inclusions in a Banach Space
Author: Alexander Tolstonogov
Publisher: Springer Science & Business Media
ISBN: 9780792366188
Category : Mathematics
Languages : en
Pages : 328
Book Description
Preface to the English Edition The present monograph is a revised and enlarged alternative of the author's monograph [19] which was devoted to the development of a unified approach to studying differential inclusions, whose values of the right hand sides are compact, not necessarily convex subsets of a Banach space. This approach relies on ideas and methods of modem functional analysis, general topology, the theory of multi-valued mappings and continuous selectors. Although the basic content of the previous monograph has been remained the same this monograph has been partly re-organized and the author's recent results have been added. The contents of the present book are divided into five Chapters and an Appendix. The first Chapter of the J>ook has been left without changes and deals with multi-valued differential equations generated by a differential inclusion. The second Chapter has been significantly revised and extended. Here the au thor's recent results concerning extreme continuous selectors of multi-functions with decomposable values, multi-valued selectors ofmulti-functions generated by a differential inclusion, the existence of solutions of a differential inclusion, whose right hand side has different properties of semicontinuity at different points, have been included. Some of these results made it possible to simplify schemes for proofs concerning the existence of solutions of differential inclu sions with semicontinuous right hand side a.nd to obtain new results. In this Chapter the existence of solutions of different types are considered.
Publisher: Springer Science & Business Media
ISBN: 9780792366188
Category : Mathematics
Languages : en
Pages : 328
Book Description
Preface to the English Edition The present monograph is a revised and enlarged alternative of the author's monograph [19] which was devoted to the development of a unified approach to studying differential inclusions, whose values of the right hand sides are compact, not necessarily convex subsets of a Banach space. This approach relies on ideas and methods of modem functional analysis, general topology, the theory of multi-valued mappings and continuous selectors. Although the basic content of the previous monograph has been remained the same this monograph has been partly re-organized and the author's recent results have been added. The contents of the present book are divided into five Chapters and an Appendix. The first Chapter of the J>ook has been left without changes and deals with multi-valued differential equations generated by a differential inclusion. The second Chapter has been significantly revised and extended. Here the au thor's recent results concerning extreme continuous selectors of multi-functions with decomposable values, multi-valued selectors ofmulti-functions generated by a differential inclusion, the existence of solutions of a differential inclusion, whose right hand side has different properties of semicontinuity at different points, have been included. Some of these results made it possible to simplify schemes for proofs concerning the existence of solutions of differential inclu sions with semicontinuous right hand side a.nd to obtain new results. In this Chapter the existence of solutions of different types are considered.
Topological Methods for Differential Equations and Inclusions
Author: John R. Graef
Publisher: CRC Press
ISBN: 0429822626
Category : Mathematics
Languages : en
Pages : 375
Book Description
Topological Methods for Differential Equations and Inclusions covers the important topics involving topological methods in the theory of systems of differential equations. The equivalence between a control system and the corresponding differential inclusion is the central idea used to prove existence theorems in optimal control theory. Since the dynamics of economic, social, and biological systems are multi-valued, differential inclusions serve as natural models in macro systems with hysteresis.
Publisher: CRC Press
ISBN: 0429822626
Category : Mathematics
Languages : en
Pages : 375
Book Description
Topological Methods for Differential Equations and Inclusions covers the important topics involving topological methods in the theory of systems of differential equations. The equivalence between a control system and the corresponding differential inclusion is the central idea used to prove existence theorems in optimal control theory. Since the dynamics of economic, social, and biological systems are multi-valued, differential inclusions serve as natural models in macro systems with hysteresis.
Impulsive Differential Inclusions
Author: John R. Graef
Publisher: Walter de Gruyter
ISBN: 3110295318
Category : Mathematics
Languages : en
Pages : 412
Book Description
Differential equations with impulses arise as models of many evolving processes that are subject to abrupt changes, such as shocks, harvesting, and natural disasters. These phenomena involve short-term perturbations from continuous and smooth dynamics, whose duration is negligible in comparison with the duration of an entire evolution. In models involving such perturbations, it is natural to assume these perturbations act instantaneously or in the form of impulses. As a consequence, impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, and so forth. There are also many different studies in biology and medicine for which impulsive differential equations provide good models. During the last 10 years, the authors have been responsible for extensive contributions to the literature on impulsive differential inclusions via fixed point methods. This book is motivated by that research as the authors endeavor to bring under one cover much of those results along with results by other researchers either affecting or affected by the authors' work. The questions of existence and stability of solutions for different classes of initial value problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems. In addition, since differential equations can be viewed as special cases of differential inclusions, significant attention is also given to relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simpler beginnings as well.
Publisher: Walter de Gruyter
ISBN: 3110295318
Category : Mathematics
Languages : en
Pages : 412
Book Description
Differential equations with impulses arise as models of many evolving processes that are subject to abrupt changes, such as shocks, harvesting, and natural disasters. These phenomena involve short-term perturbations from continuous and smooth dynamics, whose duration is negligible in comparison with the duration of an entire evolution. In models involving such perturbations, it is natural to assume these perturbations act instantaneously or in the form of impulses. As a consequence, impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, and so forth. There are also many different studies in biology and medicine for which impulsive differential equations provide good models. During the last 10 years, the authors have been responsible for extensive contributions to the literature on impulsive differential inclusions via fixed point methods. This book is motivated by that research as the authors endeavor to bring under one cover much of those results along with results by other researchers either affecting or affected by the authors' work. The questions of existence and stability of solutions for different classes of initial value problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems. In addition, since differential equations can be viewed as special cases of differential inclusions, significant attention is also given to relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simpler beginnings as well.
Advances in Mathematical Modeling, Optimization and Optimal Control
Author: Jean-Baptiste Hiriart-Urruty
Publisher: Springer
ISBN: 3319307851
Category : Mathematics
Languages : en
Pages : 205
Book Description
This book contains extended, in-depth presentations of the plenary talks from the 16th French-German-Polish Conference on Optimization, held in Kraków, Poland in 2013. Each chapter in this book exhibits a comprehensive look at new theoretical and/or application-oriented results in mathematical modeling, optimization, and optimal control. Students and researchers involved in image processing, partial differential inclusions, shape optimization, or optimal control theory and its applications to medical and rehabilitation technology, will find this book valuable. The first chapter by Martin Burger provides an overview of recent developments related to Bregman distances, which is an important tool in inverse problems and image processing. The chapter by Piotr Kalita studies the operator version of a first order in time partial differential inclusion and its time discretization. In the chapter by Günter Leugering, Jan Sokołowski and Antoni Żochowski, nonsmooth shape optimization problems for variational inequalities are considered. The next chapter, by Katja Mombaur is devoted to applications of optimal control and inverse optimal control in the field of medical and rehabilitation technology, in particular in human movement analysis, therapy and improvement by means of medical devices. The final chapter, by Nikolai Osmolovskii and Helmut Maurer provides a survey on no-gap second order optimality conditions in the calculus of variations and optimal control, and a discussion of their further development.
Publisher: Springer
ISBN: 3319307851
Category : Mathematics
Languages : en
Pages : 205
Book Description
This book contains extended, in-depth presentations of the plenary talks from the 16th French-German-Polish Conference on Optimization, held in Kraków, Poland in 2013. Each chapter in this book exhibits a comprehensive look at new theoretical and/or application-oriented results in mathematical modeling, optimization, and optimal control. Students and researchers involved in image processing, partial differential inclusions, shape optimization, or optimal control theory and its applications to medical and rehabilitation technology, will find this book valuable. The first chapter by Martin Burger provides an overview of recent developments related to Bregman distances, which is an important tool in inverse problems and image processing. The chapter by Piotr Kalita studies the operator version of a first order in time partial differential inclusion and its time discretization. In the chapter by Günter Leugering, Jan Sokołowski and Antoni Żochowski, nonsmooth shape optimization problems for variational inequalities are considered. The next chapter, by Katja Mombaur is devoted to applications of optimal control and inverse optimal control in the field of medical and rehabilitation technology, in particular in human movement analysis, therapy and improvement by means of medical devices. The final chapter, by Nikolai Osmolovskii and Helmut Maurer provides a survey on no-gap second order optimality conditions in the calculus of variations and optimal control, and a discussion of their further development.
Functional Analysis, Calculus of Variations and Optimal Control
Author: Francis Clarke
Publisher: Springer Science & Business Media
ISBN: 1447148207
Category : Mathematics
Languages : en
Pages : 589
Book Description
Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
Publisher: Springer Science & Business Media
ISBN: 1447148207
Category : Mathematics
Languages : en
Pages : 589
Book Description
Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
A Relaxation-Based Approach to Optimal Control of Hybrid and Switched Systems
Author: Vadim Azhmyakov
Publisher: Butterworth-Heinemann
ISBN: 012814789X
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
A Relaxation Based Approach to Optimal Control of Hybrid and Switched Systems proposes a unified approach to effective and numerically tractable relaxation schemes for optimal control problems of hybrid and switched systems. The book gives an overview of the existing (conventional and newly developed) relaxation techniques associated with the conventional systems described by ordinary differential equations. Next, it constructs a self-contained relaxation theory for optimal control processes governed by various types (sub-classes) of general hybrid and switched systems. It contains all mathematical tools necessary for an adequate understanding and using of the sophisticated relaxation techniques. In addition, readers will find many practically oriented optimal control problems related to the new class of dynamic systems. All in all, the book follows engineering and numerical concepts. However, it can also be considered as a mathematical compendium that contains the necessary formal results and important algorithms related to the modern relaxation theory. - Illustrates the use of the relaxation approaches in engineering optimization - Presents application of the relaxation methods in computational schemes for a numerical treatment of the sophisticated hybrid/switched optimal control problems - Offers a rigorous and self-contained mathematical tool for an adequate understanding and practical use of the relaxation techniques - Presents an extension of the relaxation methodology to the new class of applied dynamic systems, namely, to hybrid and switched control systems
Publisher: Butterworth-Heinemann
ISBN: 012814789X
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
A Relaxation Based Approach to Optimal Control of Hybrid and Switched Systems proposes a unified approach to effective and numerically tractable relaxation schemes for optimal control problems of hybrid and switched systems. The book gives an overview of the existing (conventional and newly developed) relaxation techniques associated with the conventional systems described by ordinary differential equations. Next, it constructs a self-contained relaxation theory for optimal control processes governed by various types (sub-classes) of general hybrid and switched systems. It contains all mathematical tools necessary for an adequate understanding and using of the sophisticated relaxation techniques. In addition, readers will find many practically oriented optimal control problems related to the new class of dynamic systems. All in all, the book follows engineering and numerical concepts. However, it can also be considered as a mathematical compendium that contains the necessary formal results and important algorithms related to the modern relaxation theory. - Illustrates the use of the relaxation approaches in engineering optimization - Presents application of the relaxation methods in computational schemes for a numerical treatment of the sophisticated hybrid/switched optimal control problems - Offers a rigorous and self-contained mathematical tool for an adequate understanding and practical use of the relaxation techniques - Presents an extension of the relaxation methodology to the new class of applied dynamic systems, namely, to hybrid and switched control systems