Introduction to the Theory of Differential Inclusions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Introduction to the Theory of Differential Inclusions PDF full book. Access full book title Introduction to the Theory of Differential Inclusions by Georgi V. Smirnov. Download full books in PDF and EPUB format.

Introduction to the Theory of Differential Inclusions

Introduction to the Theory of Differential Inclusions PDF Author: Georgi V. Smirnov
Publisher: American Mathematical Society
ISBN: 1470468549
Category : Mathematics
Languages : en
Pages : 226

Book Description
A differential inclusion is a relation of the form $dot x in F(x)$, where $F$ is a set-valued map associating any point $x in R^n$ with a set $F(x) subset R^n$. As such, the notion of a differential inclusion generalizes the notion of an ordinary differential equation of the form $dot x = f(x)$. Therefore, all problems usually studied in the theory of ordinary differential equations (existence and continuation of solutions, dependence on initial conditions and parameters, etc.) can be studied for differential inclusions as well. Since a differential inclusion usually has many solutions starting at a given point, new types of problems arise, such as investigation of topological properties of the set of solutions, selection of solutions with given properties, and many others. Differential inclusions play an important role as a tool in the study of various dynamical processes described by equations with a discontinuous or multivalued right-hand side, occurring, in particular, in the study of dynamics of economical, social, and biological macrosystems. They also are very useful in proving existence theorems in control theory. This text provides an introductory treatment to the theory of differential inclusions. The reader is only required to know ordinary differential equations, theory of functions, and functional analysis on the elementary level. Chapter 1 contains a brief introduction to convex analysis. Chapter 2 considers set-valued maps. Chapter 3 is devoted to the Mordukhovich version of nonsmooth analysis. Chapter 4 contains the main existence theorems and gives an idea of the approximation techniques used throughout the text. Chapter 5 is devoted to the viability problem, i.e., the problem of selection of a solution to a differential inclusion that is contained in a given set. Chapter 6 considers the controllability problem. Chapter 7 discusses extremal problems for differential inclusions. Chapter 8 presents stability theory, and Chapter 9 deals with the stabilization problem.

Introduction to the Theory of Differential Inclusions

Introduction to the Theory of Differential Inclusions PDF Author: Georgi V. Smirnov
Publisher: American Mathematical Society
ISBN: 1470468549
Category : Mathematics
Languages : en
Pages : 226

Book Description
A differential inclusion is a relation of the form $dot x in F(x)$, where $F$ is a set-valued map associating any point $x in R^n$ with a set $F(x) subset R^n$. As such, the notion of a differential inclusion generalizes the notion of an ordinary differential equation of the form $dot x = f(x)$. Therefore, all problems usually studied in the theory of ordinary differential equations (existence and continuation of solutions, dependence on initial conditions and parameters, etc.) can be studied for differential inclusions as well. Since a differential inclusion usually has many solutions starting at a given point, new types of problems arise, such as investigation of topological properties of the set of solutions, selection of solutions with given properties, and many others. Differential inclusions play an important role as a tool in the study of various dynamical processes described by equations with a discontinuous or multivalued right-hand side, occurring, in particular, in the study of dynamics of economical, social, and biological macrosystems. They also are very useful in proving existence theorems in control theory. This text provides an introductory treatment to the theory of differential inclusions. The reader is only required to know ordinary differential equations, theory of functions, and functional analysis on the elementary level. Chapter 1 contains a brief introduction to convex analysis. Chapter 2 considers set-valued maps. Chapter 3 is devoted to the Mordukhovich version of nonsmooth analysis. Chapter 4 contains the main existence theorems and gives an idea of the approximation techniques used throughout the text. Chapter 5 is devoted to the viability problem, i.e., the problem of selection of a solution to a differential inclusion that is contained in a given set. Chapter 6 considers the controllability problem. Chapter 7 discusses extremal problems for differential inclusions. Chapter 8 presents stability theory, and Chapter 9 deals with the stabilization problem.

Differential Inclusions

Differential Inclusions PDF Author: J.-P. Aubin
Publisher: Springer Science & Business Media
ISBN: 3642695124
Category : Mathematics
Languages : en
Pages : 353

Book Description
A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo "controlled" by parameters u(t) (the "controls"). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations (*) are solutions to the "differen tial inclusion" (**) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion (**), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a "maximal monotone" map. This class of inclusions contains the class of "gradient inclusions" which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable "potential". 2 Introduction There are many instances when potential functions are not differentiable

Stochastic Differential Inclusions and Applications

Stochastic Differential Inclusions and Applications PDF Author: Michał Kisielewicz
Publisher: Springer Science & Business Media
ISBN: 146146756X
Category : Mathematics
Languages : en
Pages : 295

Book Description
​This book aims to further develop the theory of stochastic functional inclusions and their applications for describing the solutions of the initial and boundary value problems for partial differential inclusions. The self-contained volume is designed to introduce the reader in a systematic fashion, to new methods of the stochastic optimal control theory from the very beginning. The exposition contains detailed proofs and uses new and original methods to characterize the properties of stochastic functional inclusions that, up to the present time, have only been published recently by the author. The work is divided into seven chapters, with the first two acting as an introduction, containing selected material dealing with point- and set-valued stochastic processes, and the final two devoted to applications and optimal control problems. The book presents recent and pressing issues in stochastic processes, control, differential games, optimization and their application in finance, manufacturing, queueing networks, and climate control. Written by an award-winning author in the field of stochastic differential inclusions and their application to control theory, This book is intended for students and researchers in mathematics and applications; particularly those studying optimal control theory. It is also highly relevant for students of economics and engineering. The book can also be used as a reference on stochastic differential inclusions. Knowledge of select topics in analysis and probability theory are required.

Impulsive Differential Inclusions

Impulsive Differential Inclusions PDF Author: John R. Graef
Publisher: Walter de Gruyter
ISBN: 3110295318
Category : Mathematics
Languages : en
Pages : 412

Book Description
Differential equations with impulses arise as models of many evolving processes that are subject to abrupt changes, such as shocks, harvesting, and natural disasters. These phenomena involve short-term perturbations from continuous and smooth dynamics, whose duration is negligible in comparison with the duration of an entire evolution. In models involving such perturbations, it is natural to assume these perturbations act instantaneously or in the form of impulses. As a consequence, impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, and so forth. There are also many different studies in biology and medicine for which impulsive differential equations provide good models. During the last 10 years, the authors have been responsible for extensive contributions to the literature on impulsive differential inclusions via fixed point methods. This book is motivated by that research as the authors endeavor to bring under one cover much of those results along with results by other researchers either affecting or affected by the authors' work. The questions of existence and stability of solutions for different classes of initial value problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems. In addition, since differential equations can be viewed as special cases of differential inclusions, significant attention is also given to relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simpler beginnings as well.

Differential Inclusions and Optimal Control

Differential Inclusions and Optimal Control PDF Author: Michal Kisielewicz
Publisher: Springer
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 268

Book Description


Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces

Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces PDF Author: Mikhail I. Kamenskii
Publisher: Walter de Gruyter
ISBN: 3110870894
Category : Mathematics
Languages : en
Pages : 245

Book Description
The theory of set-valued maps and of differential inclusion is developed in recent years both as a field of his own and as an approach to control theory. The book deals with the theory of semilinear differential inclusions in infinite dimensional spaces. In this setting, problems of interest to applications do not suppose neither convexity of the map or compactness of the multi-operators. These assumption implies the development of the theory of measure of noncompactness and the construction of a degree theory for condensing mapping. Of particular interest is the approach to the case when the linear part is a generator of a condensing, strongly continuous semigroup. In this context, the existence of solutions for the Cauchy and periodic problems are proved as well as the topological properties of the solution sets. Examples of applications to the control of transmission line and to hybrid systems are presented.

Topological Methods for Differential Equations and Inclusions

Topological Methods for Differential Equations and Inclusions PDF Author: John R. Graef
Publisher: CRC Press
ISBN: 0429822626
Category : Mathematics
Languages : en
Pages : 375

Book Description
Topological Methods for Differential Equations and Inclusions covers the important topics involving topological methods in the theory of systems of differential equations. The equivalence between a control system and the corresponding differential inclusion is the central idea used to prove existence theorems in optimal control theory. Since the dynamics of economic, social, and biological systems are multi-valued, differential inclusions serve as natural models in macro systems with hysteresis.

Solution Sets for Differential Equations and Inclusions

Solution Sets for Differential Equations and Inclusions PDF Author: Smaïl Djebali
Publisher: Walter de Gruyter
ISBN: 3110293560
Category : Mathematics
Languages : en
Pages : 474

Book Description
This monograph gives a systematic presentation of classical and recent results obtained in the last couple of years. It comprehensively describes the methods concerning the topological structure of fixed point sets and solution sets for differential equations and inclusions. Many of the basic techniques and results recently developed about this theory are presented, as well as the literature that is disseminated and scattered in several papers of pioneering researchers who developed the functional analytic framework of this field over the past few decades. Several examples of applications relating to initial and boundary value problems are discussed in detail. The book is intended to advanced graduate researchers and instructors active in research areas with interests in topological properties of fixed point mappings and applications; it also aims to provide students with the necessary understanding of the subject with no deep background material needed. This monograph fills the vacuum in the literature regarding the topological structure of fixed point sets and its applications.

Approximation and Optimization of Discrete and Differential Inclusions

Approximation and Optimization of Discrete and Differential Inclusions PDF Author: Elimhan N Mahmudov
Publisher: Elsevier
ISBN: 0123884284
Category : Mathematics
Languages : en
Pages : 396

Book Description
Optimal control theory has numerous applications in both science and engineering. This book presents basic concepts and principles of mathematical programming in terms of set-valued analysis and develops a comprehensive optimality theory of problems described by ordinary and partial differential inclusions. In addition to including well-recognized results of variational analysis and optimization, the book includes a number of new and important ones Includes practical examples

Multivalued Maps And Differential Inclusions: Elements Of Theory And Applications

Multivalued Maps And Differential Inclusions: Elements Of Theory And Applications PDF Author: Valeri Obukhovskii
Publisher: World Scientific
ISBN: 9811220239
Category : Mathematics
Languages : en
Pages : 221

Book Description
The theory of multivalued maps and the theory of differential inclusions are closely connected and intensively developing branches of contemporary mathematics. They have effective and interesting applications in control theory, optimization, calculus of variations, non-smooth and convex analysis, game theory, mathematical economics and in other fields.This book presents a user-friendly and self-contained introduction to both subjects. It is aimed at 'beginners', starting with students of senior courses. The book will be useful both for readers whose interests lie in the sphere of pure mathematics, as well as for those who are involved in applicable aspects of the theory. In Chapter 0, basic definitions and fundamental results in topology are collected. Chapter 1 begins with examples showing how naturally the idea of a multivalued map arises in diverse areas of mathematics, continues with the description of a variety of properties of multivalued maps and finishes with measurable multivalued functions. Chapter 2 is devoted to the theory of fixed points of multivalued maps. The whole of Chapter 3 focuses on the study of differential inclusions and their applications in control theory. The subject of last Chapter 4 is the applications in dynamical systems, game theory, and mathematical economics.The book is completed with the bibliographic commentaries and additions containing the exposition related both to the sections described in the book and to those which left outside its framework. The extensive bibliography (including more than 400 items) leads from basic works to recent studies.