Author: Bertrand Hsu
Publisher: SAE International
ISBN: 076804166X
Category : Technology & Engineering
Languages : en
Pages : 161
Book Description
The diesel engine is one of the most efficient types of heat engines and is widely used as a prime mover for many applications. In recent years, with the aid of modern computers, engine combustion modeling has made great progress. However, due to the complexities of the processes involved in the practical diesel engine, there are still too many unknowns preventing computational prediction to have the accuracy level required by industry. This book examines some basic characteristics of diesel engine combustion process, and describes the commonly used tool to analyze combustion - heat release analysis. It addition, Practical Diesel-Engine Combustion Analysis describes the performance changes that might be encountered in the engine user environment, with a goal of helping the reader analyze his own practical combustion problems. Chapters include: Combustion and Fuel-Injection Processes in the Diesel Engine Heat Release and its Effect on Engine Performance Alternate Fuels Combustion Analysis and more
Practical Diesel-Engine Combusion Analysis
Author: Bertrand Hsu
Publisher: SAE International
ISBN: 076804166X
Category : Technology & Engineering
Languages : en
Pages : 161
Book Description
The diesel engine is one of the most efficient types of heat engines and is widely used as a prime mover for many applications. In recent years, with the aid of modern computers, engine combustion modeling has made great progress. However, due to the complexities of the processes involved in the practical diesel engine, there are still too many unknowns preventing computational prediction to have the accuracy level required by industry. This book examines some basic characteristics of diesel engine combustion process, and describes the commonly used tool to analyze combustion - heat release analysis. It addition, Practical Diesel-Engine Combustion Analysis describes the performance changes that might be encountered in the engine user environment, with a goal of helping the reader analyze his own practical combustion problems. Chapters include: Combustion and Fuel-Injection Processes in the Diesel Engine Heat Release and its Effect on Engine Performance Alternate Fuels Combustion Analysis and more
Publisher: SAE International
ISBN: 076804166X
Category : Technology & Engineering
Languages : en
Pages : 161
Book Description
The diesel engine is one of the most efficient types of heat engines and is widely used as a prime mover for many applications. In recent years, with the aid of modern computers, engine combustion modeling has made great progress. However, due to the complexities of the processes involved in the practical diesel engine, there are still too many unknowns preventing computational prediction to have the accuracy level required by industry. This book examines some basic characteristics of diesel engine combustion process, and describes the commonly used tool to analyze combustion - heat release analysis. It addition, Practical Diesel-Engine Combustion Analysis describes the performance changes that might be encountered in the engine user environment, with a goal of helping the reader analyze his own practical combustion problems. Chapters include: Combustion and Fuel-Injection Processes in the Diesel Engine Heat Release and its Effect on Engine Performance Alternate Fuels Combustion Analysis and more
Assessment of Fuel Economy Technologies for Light-Duty Vehicles
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309216389
Category : Science
Languages : en
Pages : 373
Book Description
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.
Publisher: National Academies Press
ISBN: 0309216389
Category : Science
Languages : en
Pages : 373
Book Description
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.
Modelling Diesel Combustion
Author: P. A. Lakshminarayanan
Publisher: Springer Science & Business Media
ISBN: 904813885X
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.
Publisher: Springer Science & Business Media
ISBN: 904813885X
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.
Modeling Engine Spray and Combustion Processes
Author: Gunnar Stiesch
Publisher: Springer Science & Business Media
ISBN: 3662087901
Category : Computers
Languages : en
Pages : 293
Book Description
The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA.
Publisher: Springer Science & Business Media
ISBN: 3662087901
Category : Computers
Languages : en
Pages : 293
Book Description
The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA.
Diesel Fuel Oils
Handbook of Diesel Engines
Author: Klaus Mollenhauer
Publisher: Springer Science & Business Media
ISBN: 3540890831
Category : Technology & Engineering
Languages : en
Pages : 632
Book Description
This machine is destined to completely revolutionize cylinder diesel engine up through large low speed t- engine engineering and replace everything that exists. stroke diesel engines. An appendix lists the most (From Rudolf Diesel’s letter of October 2, 1892 to the important standards and regulations for diesel engines. publisher Julius Springer. ) Further development of diesel engines as economiz- Although Diesel’s stated goal has never been fully ing, clean, powerful and convenient drives for road and achievable of course, the diesel engine indeed revolu- nonroad use has proceeded quite dynamically in the tionized drive systems. This handbook documents the last twenty years in particular. In light of limited oil current state of diesel engine engineering and technol- reserves and the discussion of predicted climate ogy. The impetus to publish a Handbook of Diesel change, development work continues to concentrate Engines grew out of ruminations on Rudolf Diesel’s on reducing fuel consumption and utilizing alternative transformation of his idea for a rational heat engine fuels while keeping exhaust as clean as possible as well into reality more than 100 years ago. Once the patent as further increasing diesel engine power density and was filed in 1892 and work on his engine commenced enhancing operating performance.
Publisher: Springer Science & Business Media
ISBN: 3540890831
Category : Technology & Engineering
Languages : en
Pages : 632
Book Description
This machine is destined to completely revolutionize cylinder diesel engine up through large low speed t- engine engineering and replace everything that exists. stroke diesel engines. An appendix lists the most (From Rudolf Diesel’s letter of October 2, 1892 to the important standards and regulations for diesel engines. publisher Julius Springer. ) Further development of diesel engines as economiz- Although Diesel’s stated goal has never been fully ing, clean, powerful and convenient drives for road and achievable of course, the diesel engine indeed revolu- nonroad use has proceeded quite dynamically in the tionized drive systems. This handbook documents the last twenty years in particular. In light of limited oil current state of diesel engine engineering and technol- reserves and the discussion of predicted climate ogy. The impetus to publish a Handbook of Diesel change, development work continues to concentrate Engines grew out of ruminations on Rudolf Diesel’s on reducing fuel consumption and utilizing alternative transformation of his idea for a rational heat engine fuels while keeping exhaust as clean as possible as well into reality more than 100 years ago. Once the patent as further increasing diesel engine power density and was filed in 1892 and work on his engine commenced enhancing operating performance.
Advanced Direct Injection Combustion Engine Technologies and Development
Author: H Zhao
Publisher: Elsevier
ISBN: 1845697324
Category : Technology & Engineering
Languages : en
Pages : 325
Book Description
Direct injection enables precise control of the fuel/air mixture so that engines can be tuned for improved power and fuel economy, but ongoing research challenges remain in improving the technology for commercial applications. As fuel prices escalate DI engines are expected to gain in popularity for automotive applications. This important book, in two volumes, reviews the science and technology of different types of DI combustion engines and their fuels. Volume 1 deals with direct injection gasoline and CNG engines, including history and essential principles, approaches to improved fuel economy, design, optimisation, optical techniques and their applications. - Reviews key technologies for enhancing direct injection (DI) gasoline engines - Examines approaches to improved fuel economy and lower emissions - Discusses DI compressed natural gas (CNG) engines and biofuels
Publisher: Elsevier
ISBN: 1845697324
Category : Technology & Engineering
Languages : en
Pages : 325
Book Description
Direct injection enables precise control of the fuel/air mixture so that engines can be tuned for improved power and fuel economy, but ongoing research challenges remain in improving the technology for commercial applications. As fuel prices escalate DI engines are expected to gain in popularity for automotive applications. This important book, in two volumes, reviews the science and technology of different types of DI combustion engines and their fuels. Volume 1 deals with direct injection gasoline and CNG engines, including history and essential principles, approaches to improved fuel economy, design, optimisation, optical techniques and their applications. - Reviews key technologies for enhancing direct injection (DI) gasoline engines - Examines approaches to improved fuel economy and lower emissions - Discusses DI compressed natural gas (CNG) engines and biofuels
Internal Combustion Engine Fundamentals
Author: John B. Heywood
Publisher: McGraw-Hill Education
ISBN: 9780071004992
Category : Internal combustion engines
Languages : en
Pages : 930
Book Description
This text, by a leading authority in the field, presents a fundamental and factual development of the science and engineering underlying the design of combustion engines and turbines. An extensive illustration program supports the concepts and theories discussed.
Publisher: McGraw-Hill Education
ISBN: 9780071004992
Category : Internal combustion engines
Languages : en
Pages : 930
Book Description
This text, by a leading authority in the field, presents a fundamental and factual development of the science and engineering underlying the design of combustion engines and turbines. An extensive illustration program supports the concepts and theories discussed.
Diesel Engine Transient Operation
Author: Constantine D. Rakopoulos
Publisher: Springer Science & Business Media
ISBN: 1848823754
Category : Technology & Engineering
Languages : en
Pages : 408
Book Description
Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive and truck engines is inherently related to unsteady conditions. In fact, only a very small portion of a vehicle’s operating pattern is true steady-state, e. g. , when cruising on a motorway. Moreover, the most critical conditions encountered by industrial or marine engines are met during transients too. Unfortunately, the transient operation of turbocharged diesel engines has been associated with slow acceleration rate, hence poor driveability, and overshoot in particulate, gaseous and noise emissions. Despite the relatively large number of published papers, this very important subject has been treated in the past scarcely and only segmentally as regards reference books. Merely two chapters, one in the book Turbocharging the Internal Combustion Engine by N. Watson and M. S. Janota (McMillan Press, 1982) and another one written by D. E. Winterbone in the book The Thermodynamics and Gas Dynamics of Internal Combustion Engines, Vol. II edited by J. H. Horlock and D. E. Winterbone (Clarendon Press, 1986) are dedicated to transient operation. Both books, now out of print, were published a long time ago. Then, it seems reasonable to try to expand on these pioneering works, taking into account the recent technological advances and particularly the global concern about environmental pollution, which has intensified the research on transient (diesel) engine operation, typically through the Transient Cycles certification of new vehicles.
Publisher: Springer Science & Business Media
ISBN: 1848823754
Category : Technology & Engineering
Languages : en
Pages : 408
Book Description
Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive and truck engines is inherently related to unsteady conditions. In fact, only a very small portion of a vehicle’s operating pattern is true steady-state, e. g. , when cruising on a motorway. Moreover, the most critical conditions encountered by industrial or marine engines are met during transients too. Unfortunately, the transient operation of turbocharged diesel engines has been associated with slow acceleration rate, hence poor driveability, and overshoot in particulate, gaseous and noise emissions. Despite the relatively large number of published papers, this very important subject has been treated in the past scarcely and only segmentally as regards reference books. Merely two chapters, one in the book Turbocharging the Internal Combustion Engine by N. Watson and M. S. Janota (McMillan Press, 1982) and another one written by D. E. Winterbone in the book The Thermodynamics and Gas Dynamics of Internal Combustion Engines, Vol. II edited by J. H. Horlock and D. E. Winterbone (Clarendon Press, 1986) are dedicated to transient operation. Both books, now out of print, were published a long time ago. Then, it seems reasonable to try to expand on these pioneering works, taking into account the recent technological advances and particularly the global concern about environmental pollution, which has intensified the research on transient (diesel) engine operation, typically through the Transient Cycles certification of new vehicles.
Diesel and Gasoline Engine Exhausts and Some Nitroarenes
Author: IARC Working Group on the Evaluation of Carcinogenic Risks to Humans
Publisher: IARC Monographs on the Evaluat
ISBN: 9789283213284
Category : Medical
Languages : en
Pages : 0
Book Description
This volume of the IARC Monographs provides evaluations of the carcinogenicity of diesel and gasoline engine exhausts, and of 10 nitroarenes found in diesel engine exhaust: 3,7-dinitrofluoranthene, 3,9-dinitrofluoranthene, 1,3-dinitropyrene, 1,6-dinitropyrene, 1,8-dinitropyrene, 6-nitrochrysene, 2-nitrofluorene, 1-nitropyrene, 4-nitropyrene, and 3-nitrobenzanthrone. Diesel engines are used for transport on and off roads (e.g. passenger cars, buses, trucks, trains, ships), for machinery in various industrial sectors (e.g. mining, construction), and for electricity generators, particularly in developing countries. Gasoline engines are used in cars and hand-held equipment (e.g. chainsaws). The emissions from such combustion engines comprise a complex and varying mixture of gases (e.g. carbon monoxide, nitrogen oxides), particles (e.g. PM10, PM2.5, ultrafine particles, elemental carbon, organic carbon, ash, sulfate, and metals), volatile organic compunds (e.g. benzene, formaldehyde) and semi-volatile organic compounds (e.g. polycyclic aromatic hydrocarbons) including oxygenated and nitrated derivatives of polycyclic aromatic hydrocarbons. Diesel and gasoline engines thus make a significant contribution to a broad range of air pollutants to which people are exposed in the general population as well as in different occupational settings. An IARC Monographs Working Group reviewed epidemiological evidence, animal bioassays, and mechanistic and other relevant data to reach conclusions as to the carcinogenic hazard to humans of environmental or occupational exposure to diesel and gasoline engine exhausts (including those associated with the mining, railroad, construction, and transportation industries) and to 10 selected nitroarenes. -- Back cover.
Publisher: IARC Monographs on the Evaluat
ISBN: 9789283213284
Category : Medical
Languages : en
Pages : 0
Book Description
This volume of the IARC Monographs provides evaluations of the carcinogenicity of diesel and gasoline engine exhausts, and of 10 nitroarenes found in diesel engine exhaust: 3,7-dinitrofluoranthene, 3,9-dinitrofluoranthene, 1,3-dinitropyrene, 1,6-dinitropyrene, 1,8-dinitropyrene, 6-nitrochrysene, 2-nitrofluorene, 1-nitropyrene, 4-nitropyrene, and 3-nitrobenzanthrone. Diesel engines are used for transport on and off roads (e.g. passenger cars, buses, trucks, trains, ships), for machinery in various industrial sectors (e.g. mining, construction), and for electricity generators, particularly in developing countries. Gasoline engines are used in cars and hand-held equipment (e.g. chainsaws). The emissions from such combustion engines comprise a complex and varying mixture of gases (e.g. carbon monoxide, nitrogen oxides), particles (e.g. PM10, PM2.5, ultrafine particles, elemental carbon, organic carbon, ash, sulfate, and metals), volatile organic compunds (e.g. benzene, formaldehyde) and semi-volatile organic compounds (e.g. polycyclic aromatic hydrocarbons) including oxygenated and nitrated derivatives of polycyclic aromatic hydrocarbons. Diesel and gasoline engines thus make a significant contribution to a broad range of air pollutants to which people are exposed in the general population as well as in different occupational settings. An IARC Monographs Working Group reviewed epidemiological evidence, animal bioassays, and mechanistic and other relevant data to reach conclusions as to the carcinogenic hazard to humans of environmental or occupational exposure to diesel and gasoline engine exhausts (including those associated with the mining, railroad, construction, and transportation industries) and to 10 selected nitroarenes. -- Back cover.