Handbook Of Green Materials: Processing Technologies, Properties And Applications (In 4 Volumes) PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Handbook Of Green Materials: Processing Technologies, Properties And Applications (In 4 Volumes) PDF full book. Access full book title Handbook Of Green Materials: Processing Technologies, Properties And Applications (In 4 Volumes) by Kristiina Oksman. Download full books in PDF and EPUB format.

Handbook Of Green Materials: Processing Technologies, Properties And Applications (In 4 Volumes)

Handbook Of Green Materials: Processing Technologies, Properties And Applications (In 4 Volumes) PDF Author: Kristiina Oksman
Publisher: World Scientific
ISBN: 9814566470
Category : Science
Languages : en
Pages : 1124

Book Description
Green materials and green nanotechnology have gained widespread interest over the last 15 years; first in academia, then in related industries in the last few years.The Handbook of Green Materials serves as reference literature for undergraduates and graduates studying materials science and engineering, composite materials, chemical engineering, bioengineering and materials physics; and for researchers, professional engineers and consultants from polymer or forest industries who encounter biobased nanomaterials, bionanocomposites, self- and direct-assembled nanostructures and green composite materials in their lines of work.This four-volume set contains material ranging from basic, background information on the fields discussed, to reports on the latest research and industrial activities, and finally the works by contributing authors who are prominent experts of the subjects they address in this set.The four volumes comprise of:The first volume explains the structure of cellulose; different sources of raw material; the isolation/separation processes of nanomaterials from different material sources; and properties and characteristics of cellulose nanofibers and nanocrystals (starch nanomaterials). Information on the different characterization methods and the most important properties of biobased nanomaterials are also covered. The industrial point of view regarding both the processability and access of these nanomaterials, as well as large scale manufacturing and their industrial application is discussed — particularly in relation to the case of the paper industry.The second volume expounds on different bionanocomposites based on cellulose nanofibers or nanocrystals and their preparation/manufacturing processes. It also provides information on different characterization methods and the most important properties of bionanocomposites, as well as techniques of modeling the mechanical properties of nanocomposites. This volume presents the industrial point of view regarding large scale manufacturing and their applications from the perspective of their medical uses in printed electronics and in adhesives.The third volume deals with the ability of bionanomaterials to self-assemble in either liquids or forming organized solid materials. The chemistry of cellulose nanomaterials and chemical modifications as well as different assembling techniques and used characterization methods, and the most important properties which can be achieved by self-assembly, are described. The chapters, for example, discuss subjects such as ultra-light biobased aerogels based on cellulose and chitin, thin films suitable as barrier layers, self-sensing nanomaterials, and membranes for water purification.The fourth volume reviews green composite materials — including green raw materials — such as biobased carbon fibers, regenerated cellulose fibers and thermoplastic and thermoset polymers (e.g. PLA, bio-based polyolefines, polysaccharide polymers, natural rubber, bio-based polyurethane, lignin polymer, and furfurylalchohol). The most important composite processing technologies are described, including: prepregs of green composites, compounding, liquid composite molding, foaming, and compression molding. Industrial applications, especially for green transportation and the electronics industry, are also described.This four-volume set is a must-have for anyone keen to acquire knowledge on novel bionanomaterials — including structure-property correlations, isolation and purification processes of nanofibers and nanocrystals, their important characteristics, processing technologies, industrial up-scaling and suitable industry applications. The handbook is a useful reference not only for teaching activities but also for researchers who are working in this field.

Handbook Of Green Materials: Processing Technologies, Properties And Applications (In 4 Volumes)

Handbook Of Green Materials: Processing Technologies, Properties And Applications (In 4 Volumes) PDF Author: Kristiina Oksman
Publisher: World Scientific
ISBN: 9814566470
Category : Science
Languages : en
Pages : 1124

Book Description
Green materials and green nanotechnology have gained widespread interest over the last 15 years; first in academia, then in related industries in the last few years.The Handbook of Green Materials serves as reference literature for undergraduates and graduates studying materials science and engineering, composite materials, chemical engineering, bioengineering and materials physics; and for researchers, professional engineers and consultants from polymer or forest industries who encounter biobased nanomaterials, bionanocomposites, self- and direct-assembled nanostructures and green composite materials in their lines of work.This four-volume set contains material ranging from basic, background information on the fields discussed, to reports on the latest research and industrial activities, and finally the works by contributing authors who are prominent experts of the subjects they address in this set.The four volumes comprise of:The first volume explains the structure of cellulose; different sources of raw material; the isolation/separation processes of nanomaterials from different material sources; and properties and characteristics of cellulose nanofibers and nanocrystals (starch nanomaterials). Information on the different characterization methods and the most important properties of biobased nanomaterials are also covered. The industrial point of view regarding both the processability and access of these nanomaterials, as well as large scale manufacturing and their industrial application is discussed — particularly in relation to the case of the paper industry.The second volume expounds on different bionanocomposites based on cellulose nanofibers or nanocrystals and their preparation/manufacturing processes. It also provides information on different characterization methods and the most important properties of bionanocomposites, as well as techniques of modeling the mechanical properties of nanocomposites. This volume presents the industrial point of view regarding large scale manufacturing and their applications from the perspective of their medical uses in printed electronics and in adhesives.The third volume deals with the ability of bionanomaterials to self-assemble in either liquids or forming organized solid materials. The chemistry of cellulose nanomaterials and chemical modifications as well as different assembling techniques and used characterization methods, and the most important properties which can be achieved by self-assembly, are described. The chapters, for example, discuss subjects such as ultra-light biobased aerogels based on cellulose and chitin, thin films suitable as barrier layers, self-sensing nanomaterials, and membranes for water purification.The fourth volume reviews green composite materials — including green raw materials — such as biobased carbon fibers, regenerated cellulose fibers and thermoplastic and thermoset polymers (e.g. PLA, bio-based polyolefines, polysaccharide polymers, natural rubber, bio-based polyurethane, lignin polymer, and furfurylalchohol). The most important composite processing technologies are described, including: prepregs of green composites, compounding, liquid composite molding, foaming, and compression molding. Industrial applications, especially for green transportation and the electronics industry, are also described.This four-volume set is a must-have for anyone keen to acquire knowledge on novel bionanomaterials — including structure-property correlations, isolation and purification processes of nanofibers and nanocrystals, their important characteristics, processing technologies, industrial up-scaling and suitable industry applications. The handbook is a useful reference not only for teaching activities but also for researchers who are working in this field.

Developments in Plastics Technology—4

Developments in Plastics Technology—4 PDF Author: A. Whelan
Publisher: Springer Science & Business Media
ISBN: 9400911017
Category : Technology & Engineering
Languages : en
Pages : 320

Book Description
Because of the sheer size and scope of the plastics industry, the title Developments in Plastics Technology now covers an incredibly wide range of subjects or topics. No single volume can survey the whole field in any depth and what follows is, therefore, a series of chapters on selected topics. The topics were selected by us, the editors, because of their immediate relevance to the plastics industry. When one considers the advancements of the plastics processing machinery (in terms of its speed of operation and conciseness of control), it was felt that several chapters should be included which related to the types of control systems used and the correct usage of hydraulics. The importance of using cellular, rubber-modified and engineering-type plastics has had a major impact on the plastics industry and therefore a chapter on each of these subjects has been included. The two remaining chapters are on the characterisation and behaviour of polymer structures, both subjects again being of current academic or industrial interest. Each of the contributions was written by a specialist in that field and to them all, we, the editors, extend our heartfelt thanks, as writing a contribution for a book such as this, while doing a full-time job, is no easy task.

Extrusion

Extrusion PDF Author: Harold F. Giles Jr
Publisher: William Andrew
ISBN: 1437734820
Category : Technology & Engineering
Languages : en
Pages : 638

Book Description
The second edition of Extrusion is designed to aid operators, engineers, and managers in extrusion processing in quickly answering practical day-to-day questions. The first part of the book provides the fundamental principles, for operators and engineers, of polymeric materials extrusion processing in single and twin screw extruders. The next section covers advanced topics including troubleshooting, auxiliary equipment, and coextrusion for operators, engineers, and managers. The final part provides applications case studies in key areas for engineers such as compounding, blown film, extrusion blow molding, coating, foam, and reprocessing. This practical guide to extrusion brings together both equipment and materials processing aspects. It covers basic and advanced topics, for reference and training, in thermoplastics processing in the extruder. Detailed reference data are provided on such important operating conditions as temperatures, start-up procedures, shear rates, pressure drops, and safety. - A practical guide to the selection, design and optimization of extrusion processes and equipment - Designed to improve production efficiency and product quality - Focuses on practical fault analysis and troubleshooting techniques

Developments in Plastics Technology—1

Developments in Plastics Technology—1 PDF Author: A. Whelan
Publisher: Springer Science & Business Media
ISBN: 9400966229
Category : Technology & Engineering
Languages : en
Pages : 293

Book Description
In the field of plastics technology, the process of extrusion is widespread and important. It is employed in the compounding and pelletising of plastics materials, in their conversion into products (such as profiles, pipe, hose, sheet, film or bottles) and in the coating of wires, cables, paper, board or foil. A major reason for its use is the screw extruder's ability to melt efficiently and pump continuously large amounts of plastics materials. The understanding of the melting/pumping operation of the extruder and the development of larger and faster-running machines so as to give higher outputs have been given great attention and the results have been widely published. However, the whole manufacturing technology for extruded products has also developed, particularly in recent years. This has occurred not only by the use of modern screw extruders, but also by the incorporation of improved process control systems, the better design of dies and extrudate handling machinery and by the utilisation of improved plastics materials and additives. It is the purpose of this book to present selected topics which contribute to, or exemplify, these developments in extrusion-based processes.

Cellular and Microcellular Materials

Cellular and Microcellular Materials PDF Author:
Publisher:
ISBN:
Category : Plastic foams
Languages : en
Pages : 120

Book Description


Polyolefin Foams

Polyolefin Foams PDF Author: Nigel Mills
Publisher: iSmithers Rapra Publishing
ISBN: 9781859574348
Category : Science
Languages : en
Pages : 152

Book Description
Polyolefin Foams are a relatively recent development compared to the other types of foam. Topics covered in this review include: processing and the properties required for successful foam production, the molecular structures necessary, the mechanical and thermal properties and how these can be used to best advantage, markets and applications. The review is accompanied by around 400 abstracts from the Polymer Library database.

The Seventeenth Annual Conference YUCOMAT 2015

The Seventeenth Annual Conference YUCOMAT 2015 PDF Author: Dragan Uskoković
Publisher: Materials Research Society of Serbia
ISBN:
Category : Science
Languages : en
Pages : 157

Book Description
Nothing provided

Blowing Agents and Foaming Processes 2003

Blowing Agents and Foaming Processes 2003 PDF Author:
Publisher: iSmithers Rapra Publishing
ISBN: 9781859573662
Category : Foamed materials
Languages : en
Pages : 236

Book Description


Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites

Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites PDF Author: Horst Biermann
Publisher: Springer Nature
ISBN: 3030426033
Category : Technology & Engineering
Languages : en
Pages : 841

Book Description
This open access book presents a collection of the most up-to-date research results in the field of steel development with a focus on pioneering alloy concepts that result in previously unattainable materials properties. Specifically, it gives a detailed overview of the marriage of high-performance steels of the highest strength and form-ability with damage-tolerant zirconia ceramics by innovative manufacturing technologies, thereby yielding a new class of high-performance composite materials. This book describes how new high-alloy stainless TRIP/TWIP steels (TRIP: TRansformation-Induced Plasticity, TWIP: TWinning-induced Plasticity) are combined with zirconium dioxide ceramics in powder metallurgical routes and via melt infiltration to form novel TRIP-matrix composites. This work also provides a timely perspective on new compact and damage-tolerant composite materials, filigree light-weight structures as well as gradient materials, and a close understanding of the mechanisms of the phase transformations. With a detailed application analysis of state-of-the-art methods in spatial and temporal high-resolution structural analysis, in combination with advanced simulation and modelling, this edited volume is ideal for researchers and engineers working in modern steel development, as well as for graduate students of metallurgy and materials science and engineering.

Polylactide Foams

Polylactide Foams PDF Author: Mohammadreza Nofar
Publisher: William Andrew
ISBN: 0128139927
Category : Technology & Engineering
Languages : en
Pages : 274

Book Description
Polylactide Foams: Fundamentals, Manufacturing, and Applications provides an introduction to the fundamental science behind plastic foams, polylactic acid) and polylactide foaming, giving designers tactics to replace traditional resins with sustainable and biodegradable materials. The book then delves deeper into the technology behind PLA foaming, such as PLA/gas mixture characteristics, solubility, interfacial tension behaviors and crystallization kinetics of various types of PLA and their compounds. The foaming behaviors and mechanisms of various types of PLA and PLA compounds are extensively analyzed and discussed through different manufacturing technologies, namely extrusion foaming, foam injection molding and bead foaming. Interest in Poly(lactic acid) and PLA foams is extremely high – particularly as a potential replacement for styrenic resins – and the price of PLA resin is lower than ever before. This biopolymer has significant potential to improve the sustainability of the plastics industry. Polylactide Foams have a range of potential applications, such as in construction, packaging, insulation, biomedical scaffolds, and others. However, processing and performance of PLA are not at the same level as other non-biodegradable resins. - Introduces the concepts behind foaming, poly(lactic acid) and PLA foaming - Supports further research and development in PLA foams by covering the state-of-the-art in different manufacturing and processing methods - Provides practical guidance for materials scientists and engineers in industry looking to replace traditional polymer resins with a sustainable, biodegradable alternative