Development of an Integrated Performance Model for TRISO-Coated Gas Reactor Particle Fuel PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Development of an Integrated Performance Model for TRISO-Coated Gas Reactor Particle Fuel PDF full book. Access full book title Development of an Integrated Performance Model for TRISO-Coated Gas Reactor Particle Fuel by David Andrew Petti. Download full books in PDF and EPUB format.

Development of an Integrated Performance Model for TRISO-Coated Gas Reactor Particle Fuel

Development of an Integrated Performance Model for TRISO-Coated Gas Reactor Particle Fuel PDF Author: David Andrew Petti
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The success of gas reactors depends upon the safety and quality of the coated particle fuel. The understanding and evaluation of this fuel requires development of an integrated mechanistic fuel performance model that fully describes the mechanical and physico-chemical behavior of the fuel particle under irradiation. Such a model, called PARFUME (PARticle Fuel ModEl), is being developed at the Idaho National Engineering and Environmental Laboratory. PARFUME is based on multi-dimensional finite element modeling of TRISO-coated gas reactor fuel. The goal is to represent all potential failure mechanisms and to incorporate the statistical nature of the fuel. The model is currently focused on carbide, oxide nd oxycarbide uranium fuel kernels, while the coating layers are the classical IPyC/SiC/OPyC. This paper reviews the current status of the mechanical aspects of the model and presents results of calculations for irradiations from the New Production Modular High Temperature Gas Reactor program.

Development of an Integrated Performance Model for TRISO-Coated Gas Reactor Particle Fuel

Development of an Integrated Performance Model for TRISO-Coated Gas Reactor Particle Fuel PDF Author: David Andrew Petti
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The success of gas reactors depends upon the safety and quality of the coated particle fuel. The understanding and evaluation of this fuel requires development of an integrated mechanistic fuel performance model that fully describes the mechanical and physico-chemical behavior of the fuel particle under irradiation. Such a model, called PARFUME (PARticle Fuel ModEl), is being developed at the Idaho National Engineering and Environmental Laboratory. PARFUME is based on multi-dimensional finite element modeling of TRISO-coated gas reactor fuel. The goal is to represent all potential failure mechanisms and to incorporate the statistical nature of the fuel. The model is currently focused on carbide, oxide nd oxycarbide uranium fuel kernels, while the coating layers are the classical IPyC/SiC/OPyC. This paper reviews the current status of the mechanical aspects of the model and presents results of calculations for irradiations from the New Production Modular High Temperature Gas Reactor program.

An Integrated Performance Model for High Temperature Gas Cooled Reactor Coated Particle Fuel

An Integrated Performance Model for High Temperature Gas Cooled Reactor Coated Particle Fuel PDF Author: Jing Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 300

Book Description
The performance of coated fuel particles is essential for the development and deployment of High Temperature Gas Reactor (HTGR) systems for future power generation. Fuel performance modeling is indispensable for understanding the physical behavior of fuel particles and achieving their high reliability during operations and accidents through a guided design process. This thesis develops an integrated fuel performance model of coated particle fuel to comprehensively study its mechanical behavior and define an optimum fuel design strategy with the aid of the model. Key contributions of the thesis include a pyrocarbon layer crack induced particle failure model with a fracture mechanics approach, mechanical analysis of particles with better representation of irradiation induced creep, a proposed fuel optimization procedure, the capability to simulate arbitrary irradiation histories, and the incorporation of Monte Carlo sampling to account for the statistical variation of particle properties.

Benchmarking of the MIT High Temperature Gas-cooled Reactor TRISO-coated Particle Fuel Performance Model

Benchmarking of the MIT High Temperature Gas-cooled Reactor TRISO-coated Particle Fuel Performance Model PDF Author: Michael A. Stawicki
Publisher:
ISBN:
Category :
Languages : en
Pages : 133

Book Description
(cont.) It is concluded that accurate modeling of TRISO particles depends on having very high accuracy data describing material properties and a very good understanding of the uncertainties in those measurements.

High-quality Thorium TRISO Fuel Performance in HTGRs

High-quality Thorium TRISO Fuel Performance in HTGRs PDF Author:
Publisher: Forschungszentrum Jülich
ISBN: 3893368736
Category :
Languages : en
Pages : 127

Book Description


Development of a High Temperature Gas-Cooled Reactor TRISO-coated Particle Fuel Chemistry Model

Development of a High Temperature Gas-Cooled Reactor TRISO-coated Particle Fuel Chemistry Model PDF Author: Jane T. Diecker
Publisher:
ISBN:
Category :
Languages : en
Pages : 137

Book Description
The first portion of this work is a comprehensive analysis of the chemical environment in a High Temperature Gas-Cooled Reactor TRISO fuel particle. Fission product inventory versus burnup is calculated. Based on those results a thermodynamic analysis is performed to determine fission product vapor pressures, oxygen partial pressure, and carbon monoxide and carbon dioxide gas pressures within the fuel particle. Using the insight gained from the chemical analysis, a chemical failure model is incorporated into the MIT fuel performance code, TIMCOAT. Palladium penetration of the SiC layer is added to the fracture mechanics failure model. Rare-earth fission product and palladium corrosion of the SiC layer are additionally modeled. The amoeba effect is added as a new failure mode. The palladium penetration model has the most significant result on the overall fuel performance model and increases the number of predicted particle failures. The thinning of the SiC layer due to fission product corrosion has a slight effect on the overall fuel performance model. Finally, the amoeba effect model does not lead to any particle failures, but adds to the completeness of the overall model.

TRISO Fuel Performance

TRISO Fuel Performance PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 179

Book Description
This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated at a system power level of 2000 MWth, took about 3.5 years to reach full plateau power, and was capable of an End of Plateau burnup of 38.7 %FIMA if considering just the neutronic constraints in the system design; however, fuel performance constraints led to a maximum credible burnup of 12.1 %FIMA due to a combination of internal gas pressure and irradiation effects on the TRISO materials (especially PyC) leading to SiC pressure vessel failures. The optimal neutron spectrum for the thorium-fueled blanket options evaluated seemed to favor a hard spectrum (low but non-zero neutron multiplier thicknesses and high TRISO packing fractions) in terms of neutronic performance but the fuel performance constraints demonstrated that a significantly softer spectrum would be needed to decrease the rate of accumulation of fast neutron fluence in order to improve the maximum credible burnup the system could achieve.

TRISO Fuel Performance

TRISO Fuel Performance PDF Author: Jeffrey Powers
Publisher:
ISBN:
Category :
Languages : en
Pages : 354

Book Description
This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated at a system power level of 2000 MWth, took about 3.5 years to reach full plateau power, and was capable of an End of Plateau burnup of 38.7 %FIMA if considering just the neutronic constraints in the system design; however, fuel performance constraints led to a maximum credible burnup of 12.1 %FIMA due to a combination of internal gas pressure and irradiation effects on the TRISO materials (especially PyC) leading to SiC pressure vessel failures. The optimal neutron spectrum for the thorium-fueled blanket options evaluated seemed to favor a hard spectrum (low but non-zero neutron multiplier thicknesses and high TRISO packing fractions) in terms of neutronic performance but the fuel performance constraints demonstrated that a significantly softer spectrum would be needed to decrease the rate of accumulation of fast neutron fluence in order to improve the maximum credible burnup the system could achieve.

Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels (I-NERI Annual Report).

Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels (I-NERI Annual Report). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The objective of this INERI project is to develop improved fuel behavior models for gas reactor coated particle fuels and to develop improved coated-particle fuel designs that can be used reliably at very high burnups and potentially in fast gas-cooled reactors. Thermomechanical, thermophysical, and physiochemical material properties data were compiled by both the US and the French and preliminary assessments conducted. Comparison between U.S. and European data revealed many similarities and a few important differences. In all cases, the data needed for accurate fuel performance modeling of coated particle fuel at high burnup were lacking. The development of the INEEL fuel performance model, PARFUME, continued from earlier efforts. The statistical model being used to simulate the detailed finite element calculations is being upgraded and improved to allow for changes in fuel design attributes (e.g. thickness of layers, dimensions of kernel) as well as changes in important material properties to increase the flexibility of the code. In addition, modeling of other potentially important failure modes such as debonding and asphericity was started. A paper on the status of the model was presented at the HTR-2002 meeting in Petten, Netherlands in April 2002, and a paper on the statistical method was submitted to the Journal of Nuclear Material in September 2002. Benchmarking of the model against Japanese and an older DRAGON irradiation are planned. Preliminary calculations of the stresses in a coated particle have been calculated by the CEA using the ATLAS finite element model. This model and the material properties and constitutive relationships will be incorporated into a more general software platform termed Pleiades. Pleiades will be able to analyze different fuel forms at different scales (from particle to fuel body) and also handle the statistical variability in coated particle fuel. Diffusion couple experiments to study Ag and Pd transport through SiC were conducted. Analysis and characterization of the samples continues. Two active transport mechanisms are proposed: diffusion in SiC and release through SiC cracks or another, as yet undetermined, path. Silver concentration profiles determined by XPS analysis suggest diffusion within the SiC layer, most likely dominated by grain boundary diffusion. However, diffusion coefficients calculated from mass loss measurements suggest a much faster release path, postulated as small cracks or flaws that provide open paths with little resistance to silver migration. Work is ongoing to identify and characterize this path. Work on Pd behavior has begun and will continue next year.

Key Differences in the Fabrication, Irradiation, and Safety Testing of U.S. and German TRISO-coated Particle Fuel and Their Implications on Fuel Performance

Key Differences in the Fabrication, Irradiation, and Safety Testing of U.S. and German TRISO-coated Particle Fuel and Their Implications on Fuel Performance PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
High temperature gas reactor technology is achieving a renaissance around the world. This technology relies on high quality production and performance of coated particle fuel. Historically, the irradiation performance of TRISO-coated gas reactor particle fuel in Germany has been superior to that in the United States. German fuel generally displayed in-pile gas release values that were three orders of magnitude lower than U.S. fuel. Thus, we have critically examined the TRISO-coated fuel fabrication processes in the U.S. and Germany and the associated irradiation database with a goal of understanding why the German fuel behaves acceptably, why the U.S. fuel has not faired as well, and what process/ production parameters impart the reliable performance to this fuel form. The postirradiation examination results are also reviewed to identify failure mechanisms that may be the cause of the poorer U.S. irradiation performance. This comparison will help determine the roles that particle fuel process/product attributes and irradiation conditions (burnup, fast neutron fluence, temperature, and degree of acceleration) have on the behavior of the fuel during irradiation and provide a more quantitative linkage between acceptable processing parameters, as-fabricated fuel properties and subsequent in-reactor performance.

Development and Demonstration of the TRIUNE TRISO Fuel Performance Model

Development and Demonstration of the TRIUNE TRISO Fuel Performance Model PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description