Development of an Integrated In-situ Remediation Technology. Topical Report for Task No. 11 Entitled PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Development of an Integrated In-situ Remediation Technology. Topical Report for Task No. 11 Entitled PDF full book. Access full book title Development of an Integrated In-situ Remediation Technology. Topical Report for Task No. 11 Entitled by . Download full books in PDF and EPUB format.

Development of an Integrated In-situ Remediation Technology. Topical Report for Task No. 11 Entitled

Development of an Integrated In-situ Remediation Technology. Topical Report for Task No. 11 Entitled PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 214

Book Description
Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task No. 11 summarizes the results of TCE analysis in soil and carbon before and after conducting the field experiment. In addition, a discussion of the TCE material balance demonstrates that the Lasagna{trademark} process is effective in moving TCE from the contaminated soil into carbon treatment zones in the field experiment at DOE's Gaseous Diffusion Plant in Paducah, Kentucky.

Development of an Integrated In-situ Remediation Technology. Topical Report for Task No. 11 Entitled

Development of an Integrated In-situ Remediation Technology. Topical Report for Task No. 11 Entitled PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 214

Book Description
Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task No. 11 summarizes the results of TCE analysis in soil and carbon before and after conducting the field experiment. In addition, a discussion of the TCE material balance demonstrates that the Lasagna{trademark} process is effective in moving TCE from the contaminated soil into carbon treatment zones in the field experiment at DOE's Gaseous Diffusion Plant in Paducah, Kentucky.

Development of an Integrated In-situ Remediation Technology. Topical Report for Task No. 3.1 Entitled, Emplacement Technology - An Evaluation of Phase IIa and Alternative Lasagna{trademark} Emplacement Methods (September 26, 1994 - August 31, 1997).

Development of an Integrated In-situ Remediation Technology. Topical Report for Task No. 3.1 Entitled, Emplacement Technology - An Evaluation of Phase IIa and Alternative Lasagna{trademark} Emplacement Methods (September 26, 1994 - August 31, 1997). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description


The Office of Environmental Management Technical Reports: A Bibliography

The Office of Environmental Management Technical Reports: A Bibliography PDF Author:
Publisher: DIANE Publishing
ISBN: 1428918744
Category :
Languages : en
Pages : 245

Book Description
The Office of Environmental Management's (EM) technical reports bibliography is an annual publication that contains information on scientific and technical reports sponsored by the Office of Environmental Management added to the Energy Science and Technology Database from July 1, 1994 through June 30, 1995. This information is divided into the following categories: Focus Areas, Cross-Cutting Programs, and Support Programs. In addition, a category for general information is included. EM's Office of Science and Technology sponsors this bibliography.

Development of an Integrated In-situ Remediation Technology. Topical Report for Task No. 7 Entitled

Development of an Integrated In-situ Remediation Technology. Topical Report for Task No. 7 Entitled PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 53

Book Description
Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to law permeability soils present at many contaminated sites. The Lasagna technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The general concept of the technology is to use electrokinetics to move contaminants from the soils into {open_quotes}treatment zones{close_quotes} where the contaminants can be removed from the water by either adsorption or degradation. The focus of technical task No. 7 was to optimize the conditions required for electro-osmotic movement of contaminants and microbial degradation in the treatment zones. This topical report summarizes the results of aerobic microbial research performed to evaluate the feasibility of incorporating the chemical-degrading organisms into biotreatment zones in laboratory-scale electro-osmosis units and to demonstrate the combination of electrokinetics and aerobic microbial degradation for the removal of contaminants from clay. Also included in this report are the results of investigating microbial movement during electro-osmosis and studies involving the optimization of the microbial support matrix in the biozone. The Stanford study was conducted in order to obtain a better understanding of rates of anaerobic reductive dehalogenation of TCE to ethylene and of factors affecting these rates in order to determine the potential for application of TCE biodegradation as part of the Lasagna technology.

Development of an Integrated, In-situ Remediation Technology. Draft Topical Report for Task No. 9. Part II. Entitled

Development of an Integrated, In-situ Remediation Technology. Draft Topical Report for Task No. 9. Part II. Entitled PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 24

Book Description
Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The use of zero valence iron for reductive dechlorination of aliphatic chlorinated hydrocarbons is currently under investigation by a number of research groups as a potential method of in-situ treatment of contaminated ground water. The reaction appears to involve the transfer of electrons to chloro-aliphatic compounds by the oxidation of zero valence iron to ferrous iron (Fe{sup +2}). Our studies have indicated that this reaction is consistent with those of corrosion, and as such, can be influenced or increased by the presence of small amounts of metals (5% by weight) such as copper, tin, silver, gold and palladium coated on the iron surface. Incomplete coverage of the iron surface with a more electropositive metal results in an open galvanic cell, which increases the oxidation of iron and facilitates and increases the concurrent reduction of trichloroethylene and other chlorinated aliphatic compounds to the corresponding alkenes and alkanes. Our results show that plating more electropositive metals onto certain iron surfaces results in approximately a factor of ten increase in the dechlorination rate of small organochlorine compounds such as TCE.

Development of an Integrated In-situ Remediation Technology. Topical Report for Task No. 12 and 13 Entitled

Development of an Integrated In-situ Remediation Technology. Topical Report for Task No. 12 and 13 Entitled PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 139

Book Description
Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to instant degradation zones directly in the contaminated soil and electroosmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the results of the field experiment conducted at the Paducah Gaseous Diffusion Plant in Paducah, KY. The test site covered 15 feet wide by 10 feet across and 15 feet deep with steel panels as electrodes and wickdrains containing granular activated carbon as treatment zone & The electrodes and treatment zones were installed utilizing innovative adaptation of existing emplacement technologies. The unit was operated for four months, flushing TCE by electroosmosis from the soil into the treatment zones where it was trapped by the activated carbon. The scale up from laboratory units to this field scale was very successful with respect to electrical parameters as weft as electroosmotic flow. Soil samples taken throughout the site before and after the test showed over 98% TCE removal, with most samples showing greater than 99% removal.

Liechtensteinisches Zivilgesetzbuch

Liechtensteinisches Zivilgesetzbuch PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 127

Book Description


Development of an Integrated In-situ Remediation Technology. Draft Topical Report for Task {number_sign}3.3 Entitled, ''Iron Dechlorination Studies'' (September 26, 1994--August 31, 1997).

Development of an Integrated In-situ Remediation Technology. Draft Topical Report for Task {number_sign}3.3 Entitled, ''Iron Dechlorination Studies'' (September 26, 1994--August 31, 1997). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 27

Book Description
Contamination in low-permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task {number_sign}3.3 summarizes the iron dechlorination research conducted by Monsanto Company.

Development of the Integrated, In-situ Remediation Technology. Topical Report for Tasks No. 8 and No. 10 Entitled

Development of the Integrated, In-situ Remediation Technology. Topical Report for Tasks No. 8 and No. 10 Entitled PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 71

Book Description
Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated W and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the results of the lab and pilot sized Lasagna{trademark} experiments conducted at Monsanto. Experiments were conducted with kaofinite and an actual Paducah soil in units ranging from bench-scale containing kg-quantity of soil to pilot-scale containing about half a ton of soil having various treatment zone configurations. The obtained data support the feasibility of scaling up this technology with respect to electrokinetic parameters as well as removal of organic contaminants. A mathematical model was developed that was successful in predicting the temperature rises in the soil. The information and experience gained from these experiments along with the modeling effort enabled us to successfully design and operate a larger field experiment at a DOE TCE-contaminated clay site.

Development of an Integrated, In-situ Remediation Technology. Topical Report for Task No. 6

Development of an Integrated, In-situ Remediation Technology. Topical Report for Task No. 6 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 21

Book Description
Contamination in low permeability soils poses a significant technical challenge to in situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in situ treatments such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil, and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task No. 6 summarizes the results of a study of the potential for stimulating microbial reductive dehalogenation as part of the integrated in situ treatment process at the field experiment test site at DOE's Gaseous Diffusion Plant in Paducah, Kentucky. A series of {open_quotes}microcosm bottle tests{close_quotes} were performed on samples of contaminated soil and groundwater taken from the Paducah site and spiked with trichloroethene (TCE). A number of bottles were set up, each spiked with a different carbon source in order to enhance the growth of different microbial subpopulations already present within the indigenous population in the soil. In addition, a series of bottle tests were completed with samples of the granular activated carbon (GAC) treatment zone material retrieved from the test site during the Paducah field experiment. In these tests, the GAC samples were used in place of the soil. Results of the soil-groundwater microcosms yielded a negative indication of the presence of dechlorinating bacteria at the site. However, charcoal (GAC) samples from one location in the test plot exhibited marked dechlorination with conversion of TCE to dichloroethene.