Author: D.E. James
Publisher: Springer Science & Business Media
ISBN: 0442243669
Category : Science
Languages : en
Pages : 1299
Book Description
Consisting of more than 150 articles written by leading experts, this authoritative reference encompasses the entire field of solid-earth geophysics. It describes in detail the state of current knowledge, including advanced instrumentation and techniques, and focuses on important areas of exploration geophysics. It also offers clear and complete coverage of seismology, geodesy, gravimetry, magnetotellurics and related areas in the adjacent disciplines of physics, geology, oceanography and space science.
Encyclopedia of Solid Earth Geophysics
Author: D.E. James
Publisher: Springer Science & Business Media
ISBN: 0442243669
Category : Science
Languages : en
Pages : 1299
Book Description
Consisting of more than 150 articles written by leading experts, this authoritative reference encompasses the entire field of solid-earth geophysics. It describes in detail the state of current knowledge, including advanced instrumentation and techniques, and focuses on important areas of exploration geophysics. It also offers clear and complete coverage of seismology, geodesy, gravimetry, magnetotellurics and related areas in the adjacent disciplines of physics, geology, oceanography and space science.
Publisher: Springer Science & Business Media
ISBN: 0442243669
Category : Science
Languages : en
Pages : 1299
Book Description
Consisting of more than 150 articles written by leading experts, this authoritative reference encompasses the entire field of solid-earth geophysics. It describes in detail the state of current knowledge, including advanced instrumentation and techniques, and focuses on important areas of exploration geophysics. It also offers clear and complete coverage of seismology, geodesy, gravimetry, magnetotellurics and related areas in the adjacent disciplines of physics, geology, oceanography and space science.
Quantitative Seismology
Author: Keiiti Aki
Publisher:
ISBN: 9781891389634
Category : Seismology
Languages : en
Pages : 0
Book Description
This new edition of the classic text by Aki and Richards has at last been updated throughout to systematically explain key concepts in seismology. Now in one volume, the book provides a unified treatment of seismological methods that will be of use to advanced students, seismologists, and scientists and engineers working in all areas of seismology.
Publisher:
ISBN: 9781891389634
Category : Seismology
Languages : en
Pages : 0
Book Description
This new edition of the classic text by Aki and Richards has at last been updated throughout to systematically explain key concepts in seismology. Now in one volume, the book provides a unified treatment of seismological methods that will be of use to advanced students, seismologists, and scientists and engineers working in all areas of seismology.
Moment Tensor Solutions
Author: Sebastiano D'Amico
Publisher: Springer
ISBN: 3319773593
Category : Science
Languages : en
Pages : 751
Book Description
This book first focuses on the explanation of the theory about focal mechanisms and moment tensor solutions and their role in the modern seismology. The second part of the book compiles several state-of-the-art case studies in different seismotectonic settings of the planet.The assessment of seismic hazard and the reduction of losses due to future earthquakes is probably the most important contribution of seismology to society. In this regard, the understanding of reliable determination seismic source and of its uncertainty can play a key role in contributing to geodynamic investigation, seismic hazard assessment and earthquake studies. In the last two decades, the use of waveforms recorded at local-to-regional distances has increased considerably. Waveform modeling has been used also to estimate faulting parameters of small-to-moderate sized earthquakes.
Publisher: Springer
ISBN: 3319773593
Category : Science
Languages : en
Pages : 751
Book Description
This book first focuses on the explanation of the theory about focal mechanisms and moment tensor solutions and their role in the modern seismology. The second part of the book compiles several state-of-the-art case studies in different seismotectonic settings of the planet.The assessment of seismic hazard and the reduction of losses due to future earthquakes is probably the most important contribution of seismology to society. In this regard, the understanding of reliable determination seismic source and of its uncertainty can play a key role in contributing to geodynamic investigation, seismic hazard assessment and earthquake studies. In the last two decades, the use of waveforms recorded at local-to-regional distances has increased considerably. Waveform modeling has been used also to estimate faulting parameters of small-to-moderate sized earthquakes.
Full Seismic Waveform Modelling and Inversion
Author: Andreas Fichtner
Publisher: Springer Science & Business Media
ISBN: 3642158072
Category : Science
Languages : en
Pages : 352
Book Description
Recent progress in numerical methods and computer science allows us today to simulate the propagation of seismic waves through realistically heterogeneous Earth models with unprecedented accuracy. Full waveform tomography is a tomographic technique that takes advantage of numerical solutions of the elastic wave equation. The accuracy of the numerical solutions and the exploitation of complete waveform information result in tomographic images that are both more realistic and better resolved. This book develops and describes state of the art methodologies covering all aspects of full waveform tomography including methods for the numerical solution of the elastic wave equation, the adjoint method, the design of objective functionals and optimisation schemes. It provides a variety of case studies on all scales from local to global based on a large number of examples involving real data. It is a comprehensive reference on full waveform tomography for advanced students, researchers and professionals.
Publisher: Springer Science & Business Media
ISBN: 3642158072
Category : Science
Languages : en
Pages : 352
Book Description
Recent progress in numerical methods and computer science allows us today to simulate the propagation of seismic waves through realistically heterogeneous Earth models with unprecedented accuracy. Full waveform tomography is a tomographic technique that takes advantage of numerical solutions of the elastic wave equation. The accuracy of the numerical solutions and the exploitation of complete waveform information result in tomographic images that are both more realistic and better resolved. This book develops and describes state of the art methodologies covering all aspects of full waveform tomography including methods for the numerical solution of the elastic wave equation, the adjoint method, the design of objective functionals and optimisation schemes. It provides a variety of case studies on all scales from local to global based on a large number of examples involving real data. It is a comprehensive reference on full waveform tomography for advanced students, researchers and professionals.
Modern Directional Statistics
Author: Christophe Ley
Publisher: CRC Press
ISBN: 1351645781
Category : Computers
Languages : en
Pages : 233
Book Description
Modern Directional Statistics collects important advances in methodology and theory for directional statistics over the last two decades. It provides a detailed overview and analysis of recent results that can help both researchers and practitioners. Knowledge of multivariate statistics eases the reading but is not mandatory. The field of directional statistics has received a lot of attention over the past two decades, due to new demands from domains such as life sciences or machine learning, to the availability of massive data sets requiring adapted statistical techniques, and to technological advances. This book covers important progresses in distribution theory,high-dimensional statistics, kernel density estimation, efficient inference on directional supports, and computational and graphical methods. Christophe Ley is professor of mathematical statistics at Ghent University. His research interests include semi-parametrically efficient inference, flexible modeling, directional statistics and the study of asymptotic approximations via Stein’s Method. His achievements include the Marie-Jeanne Laurent-Duhamel prize of the Société Française de Statistique and an elected membership at the International Statistical Institute. He is associate editor for the journals Computational Statistics & Data Analysis and Econometrics and Statistics. Thomas Verdebout is professor of mathematical statistics at Université libre de Bruxelles (ULB). His main research interests are semi-parametric statistics, high- dimensional statistics, directional statistics and rank-based procedures. He has won an annual prize of the Belgian Academy of Sciences and is an elected member of the International Statistical Institute. He is associate editor for the journals Statistics and Probability Letters and Journal of Multivariate Analysis.
Publisher: CRC Press
ISBN: 1351645781
Category : Computers
Languages : en
Pages : 233
Book Description
Modern Directional Statistics collects important advances in methodology and theory for directional statistics over the last two decades. It provides a detailed overview and analysis of recent results that can help both researchers and practitioners. Knowledge of multivariate statistics eases the reading but is not mandatory. The field of directional statistics has received a lot of attention over the past two decades, due to new demands from domains such as life sciences or machine learning, to the availability of massive data sets requiring adapted statistical techniques, and to technological advances. This book covers important progresses in distribution theory,high-dimensional statistics, kernel density estimation, efficient inference on directional supports, and computational and graphical methods. Christophe Ley is professor of mathematical statistics at Ghent University. His research interests include semi-parametrically efficient inference, flexible modeling, directional statistics and the study of asymptotic approximations via Stein’s Method. His achievements include the Marie-Jeanne Laurent-Duhamel prize of the Société Française de Statistique and an elected membership at the International Statistical Institute. He is associate editor for the journals Computational Statistics & Data Analysis and Econometrics and Statistics. Thomas Verdebout is professor of mathematical statistics at Université libre de Bruxelles (ULB). His main research interests are semi-parametric statistics, high- dimensional statistics, directional statistics and rank-based procedures. He has won an annual prize of the Belgian Academy of Sciences and is an elected member of the International Statistical Institute. He is associate editor for the journals Statistics and Probability Letters and Journal of Multivariate Analysis.
An Introduction to Seismology, Earthquakes, and Earth Structure
Author: Seth Stein
Publisher: John Wiley & Sons
ISBN: 144431131X
Category : Science
Languages : en
Pages : 512
Book Description
An Introduction to Seismology, Earthquakes and Earth Structures is an introduction to seismology and its role in the earth sciences, and is written for advanced undergraduate and beginning graduate students. The fundamentals of seismic wave propagation are developed using a physical approach and then applied to show how refraction, reflection, and teleseismic techniques are used to study the structure and thus the composition and evolution of the earth. The book shows how seismic waves are used to study earthquakes and are integrated with other data to investigate the plate tectonic processes that cause earthquakes. Figures, examples, problems, and computer exercises teach students about seismology in a creative and intuitive manner. Necessary mathematical tools including vector and tensor analysis, matrix algebra, Fourier analysis, statistics of errors, signal processing, and data inversion are introduced with many relevant examples. The text also addresses the fundamentals of seismometry and applications of seismology to societal issues. Special attention is paid to help students visualize connections between different topics and view seismology as an integrated science. An Introduction to Seismology, Earthquakes, and Earth Structure gives an excellent overview for students of geophysics and tectonics, and provides a strong foundation for further studies in seismology. Multidisciplinary examples throughout the text - catering to students in varied disciplines (geology, mineralogy, petrology, physics, etc.). Most up to date book on the market - includes recent seismic events such as the 1999 Earthquakes in Turkey, Greece, and Taiwan). Chapter outlines - each chapter begins with an outline and a list of learning objectives to help students focus and study. Essential math review - an entire section reviews the essential math needed to understand seismology. This can be covered in class or left to students to review as needed. End of chapter problem sets - homework problems that cover the material presented in the chapter. Solutions to all odd numbered problem sets are listed in the back so that students can track their progress. Extensive References - classic references and more current references are listed at the end of each chapter. A set of instructor's resources containing downloadable versions of all the figures in the book, errata and answers to homework problems is available at: http://levee.wustl.edu/seismology/book/. Also available on this website are PowerPoint lecture slides corresponding to the first 5 chapters of the book.
Publisher: John Wiley & Sons
ISBN: 144431131X
Category : Science
Languages : en
Pages : 512
Book Description
An Introduction to Seismology, Earthquakes and Earth Structures is an introduction to seismology and its role in the earth sciences, and is written for advanced undergraduate and beginning graduate students. The fundamentals of seismic wave propagation are developed using a physical approach and then applied to show how refraction, reflection, and teleseismic techniques are used to study the structure and thus the composition and evolution of the earth. The book shows how seismic waves are used to study earthquakes and are integrated with other data to investigate the plate tectonic processes that cause earthquakes. Figures, examples, problems, and computer exercises teach students about seismology in a creative and intuitive manner. Necessary mathematical tools including vector and tensor analysis, matrix algebra, Fourier analysis, statistics of errors, signal processing, and data inversion are introduced with many relevant examples. The text also addresses the fundamentals of seismometry and applications of seismology to societal issues. Special attention is paid to help students visualize connections between different topics and view seismology as an integrated science. An Introduction to Seismology, Earthquakes, and Earth Structure gives an excellent overview for students of geophysics and tectonics, and provides a strong foundation for further studies in seismology. Multidisciplinary examples throughout the text - catering to students in varied disciplines (geology, mineralogy, petrology, physics, etc.). Most up to date book on the market - includes recent seismic events such as the 1999 Earthquakes in Turkey, Greece, and Taiwan). Chapter outlines - each chapter begins with an outline and a list of learning objectives to help students focus and study. Essential math review - an entire section reviews the essential math needed to understand seismology. This can be covered in class or left to students to review as needed. End of chapter problem sets - homework problems that cover the material presented in the chapter. Solutions to all odd numbered problem sets are listed in the back so that students can track their progress. Extensive References - classic references and more current references are listed at the end of each chapter. A set of instructor's resources containing downloadable versions of all the figures in the book, errata and answers to homework problems is available at: http://levee.wustl.edu/seismology/book/. Also available on this website are PowerPoint lecture slides corresponding to the first 5 chapters of the book.
Advances in Seismic Event Location
Author: Cliffort H. Thurber
Publisher: Springer Science & Business Media
ISBN: 9401595364
Category : Science
Languages : en
Pages : 271
Book Description
Advances in Seismic Event Location provides a broad overview of the fundamental issues involved in seismic event location, and presents a variety of state-of-the-art location methods and applications at a wide range of spatial scales. Three important themes in the book are: seismic monitoring for a Comprehensive Nuclear-Test-Ban Treaty (CTBT), seismic event location in three-dimensional Earth models, and methods for multiple-event location. Each chapter contains background material to help readers less familiar with the topics covered, as well as to provide abundant references for readers interested in probing deeper into a topic. However, most of the emphasis is on recent advances in methodology and their application. Audience: The book is intended primarily for academic and professional researchers and graduate students in seismology.
Publisher: Springer Science & Business Media
ISBN: 9401595364
Category : Science
Languages : en
Pages : 271
Book Description
Advances in Seismic Event Location provides a broad overview of the fundamental issues involved in seismic event location, and presents a variety of state-of-the-art location methods and applications at a wide range of spatial scales. Three important themes in the book are: seismic monitoring for a Comprehensive Nuclear-Test-Ban Treaty (CTBT), seismic event location in three-dimensional Earth models, and methods for multiple-event location. Each chapter contains background material to help readers less familiar with the topics covered, as well as to provide abundant references for readers interested in probing deeper into a topic. However, most of the emphasis is on recent advances in methodology and their application. Audience: The book is intended primarily for academic and professional researchers and graduate students in seismology.
Living on an Active Earth
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309065623
Category : Science
Languages : en
Pages : 431
Book Description
The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.
Publisher: National Academies Press
ISBN: 0309065623
Category : Science
Languages : en
Pages : 431
Book Description
The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.
Reservoir Geomechanics
Author: Mark D. Zoback
Publisher: Cambridge University Press
ISBN: 1107320089
Category : Technology & Engineering
Languages : en
Pages : 505
Book Description
This interdisciplinary book encompasses the fields of rock mechanics, structural geology and petroleum engineering to address a wide range of geomechanical problems that arise during the exploitation of oil and gas reservoirs. It considers key practical issues such as prediction of pore pressure, estimation of hydrocarbon column heights and fault seal potential, determination of optimally stable well trajectories, casing set points and mud weights, changes in reservoir performance during depletion, and production-induced faulting and subsidence. The book establishes the basic principles involved before introducing practical measurement and experimental techniques to improve recovery and reduce exploitation costs. It illustrates their successful application through case studies taken from oil and gas fields around the world. This book is a practical reference for geoscientists and engineers in the petroleum and geothermal industries, and for research scientists interested in stress measurements and their application to problems of faulting and fluid flow in the crust.
Publisher: Cambridge University Press
ISBN: 1107320089
Category : Technology & Engineering
Languages : en
Pages : 505
Book Description
This interdisciplinary book encompasses the fields of rock mechanics, structural geology and petroleum engineering to address a wide range of geomechanical problems that arise during the exploitation of oil and gas reservoirs. It considers key practical issues such as prediction of pore pressure, estimation of hydrocarbon column heights and fault seal potential, determination of optimally stable well trajectories, casing set points and mud weights, changes in reservoir performance during depletion, and production-induced faulting and subsidence. The book establishes the basic principles involved before introducing practical measurement and experimental techniques to improve recovery and reduce exploitation costs. It illustrates their successful application through case studies taken from oil and gas fields around the world. This book is a practical reference for geoscientists and engineers in the petroleum and geothermal industries, and for research scientists interested in stress measurements and their application to problems of faulting and fluid flow in the crust.
Seismic Waves and Sources
Author: A. Ben-Menahem
Publisher: Springer Science & Business Media
ISBN: 1461258561
Category : Science
Languages : en
Pages : 1127
Book Description
Earthquakes come and go as they please, leaving behind them trails of destruc tion and casualties. Although their occurrence is little affected by what we do or think, it is the task of earth scientists to keep studying them from all possible angles until ways and means are found to divert, forecast, and eventually control them. In ancient times people were awestruck by singular geophysical events, which were attributed to supernatural powers. It was recognized only in 1760 that earthquakes originated within the earth. A hundred years later, first systematic attempts were made to apply physical principles to study them. During the next century scientists accumulated knowledge about the effects of earthquakes, their geographic patterns, the waves emitted by them, and the internal constitution of the earth. During the past 20 years, seismology has made a tremendous progress, mainly because of the advent of modern computers and improvements in data acquisi tion systems, which are now capable of digital and analog recording of ground motion over a frequency range of five orders of magnitude. These technologic developments have enabled seismologists to make measurements with far greater precision and sophistication than was previously possible. Advanced computational analyses have been applied to high-quality data and elaborate theoretical models have been devised to interpret them. As a result, far reaching advances in our knowledge of the earth's structure and the nature of earthquake sources have occurred.
Publisher: Springer Science & Business Media
ISBN: 1461258561
Category : Science
Languages : en
Pages : 1127
Book Description
Earthquakes come and go as they please, leaving behind them trails of destruc tion and casualties. Although their occurrence is little affected by what we do or think, it is the task of earth scientists to keep studying them from all possible angles until ways and means are found to divert, forecast, and eventually control them. In ancient times people were awestruck by singular geophysical events, which were attributed to supernatural powers. It was recognized only in 1760 that earthquakes originated within the earth. A hundred years later, first systematic attempts were made to apply physical principles to study them. During the next century scientists accumulated knowledge about the effects of earthquakes, their geographic patterns, the waves emitted by them, and the internal constitution of the earth. During the past 20 years, seismology has made a tremendous progress, mainly because of the advent of modern computers and improvements in data acquisi tion systems, which are now capable of digital and analog recording of ground motion over a frequency range of five orders of magnitude. These technologic developments have enabled seismologists to make measurements with far greater precision and sophistication than was previously possible. Advanced computational analyses have been applied to high-quality data and elaborate theoretical models have been devised to interpret them. As a result, far reaching advances in our knowledge of the earth's structure and the nature of earthquake sources have occurred.