Author: Valery Lebedev
Publisher: Springer
ISBN: 1493908855
Category : Science
Languages : en
Pages : 496
Book Description
This book presents the developments in accelerator physics and technology implemented at the Tevatron proton-antiproton collider, the world’s most powerful accelerator for almost twenty years prior to the completion of the Large Hadron Collider. The book covers the history of collider operation and upgrades, novel arrangements of beam optics and methods of orbit control, antiproton production and cooling, beam instabilities and feedback systems, halo collimation, and advanced beam instrumentation. The topics discussed show the complexity and breadth of the issues associated with modern hadron accelerators, while providing a systematic approach needed in the design and construction of next generation colliders. This book is a valuable resource for researchers in high energy physics and can serve as an introduction for students studying the beam physics of colliders.
Accelerator Physics at the Tevatron Collider
Author: Valery Lebedev
Publisher: Springer
ISBN: 1493908855
Category : Science
Languages : en
Pages : 496
Book Description
This book presents the developments in accelerator physics and technology implemented at the Tevatron proton-antiproton collider, the world’s most powerful accelerator for almost twenty years prior to the completion of the Large Hadron Collider. The book covers the history of collider operation and upgrades, novel arrangements of beam optics and methods of orbit control, antiproton production and cooling, beam instabilities and feedback systems, halo collimation, and advanced beam instrumentation. The topics discussed show the complexity and breadth of the issues associated with modern hadron accelerators, while providing a systematic approach needed in the design and construction of next generation colliders. This book is a valuable resource for researchers in high energy physics and can serve as an introduction for students studying the beam physics of colliders.
Publisher: Springer
ISBN: 1493908855
Category : Science
Languages : en
Pages : 496
Book Description
This book presents the developments in accelerator physics and technology implemented at the Tevatron proton-antiproton collider, the world’s most powerful accelerator for almost twenty years prior to the completion of the Large Hadron Collider. The book covers the history of collider operation and upgrades, novel arrangements of beam optics and methods of orbit control, antiproton production and cooling, beam instabilities and feedback systems, halo collimation, and advanced beam instrumentation. The topics discussed show the complexity and breadth of the issues associated with modern hadron accelerators, while providing a systematic approach needed in the design and construction of next generation colliders. This book is a valuable resource for researchers in high energy physics and can serve as an introduction for students studying the beam physics of colliders.
Superconducting Accelerator Magnets
Author: K.-H. Mess
Publisher: World Scientific
ISBN: 9789810227906
Category : Science
Languages : en
Pages : 236
Book Description
The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements on field quality in large storage rings. The operational experience with the superconducting HERA collider serves as an illustration. Finally superconducting correction coils and practical construction and fabrication methods of accelerator magnets are discussed. The physical and technical principles described in the book are substantiated with a wealth of experimental data on multipoles, persistent- and eddy-current effects, quench performance and much more.
Publisher: World Scientific
ISBN: 9789810227906
Category : Science
Languages : en
Pages : 236
Book Description
The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements on field quality in large storage rings. The operational experience with the superconducting HERA collider serves as an illustration. Finally superconducting correction coils and practical construction and fabrication methods of accelerator magnets are discussed. The physical and technical principles described in the book are substantiated with a wealth of experimental data on multipoles, persistent- and eddy-current effects, quench performance and much more.
LHC Design Report
Nb3Sn Accelerator Magnets
Author: Alexander V Zlobin
Publisher:
ISBN: 9781013271359
Category : Science
Languages : en
Pages : 460
Book Description
This open access book is written by world-recognized experts in the fields of applied superconductivity and superconducting accelerator magnet technologies. It provides a contemporary review and assessment of the experience in research and development of high-field accelerator dipole magnets based on Nb3Sn superconductor over the past five decades. The reader attains clear insight into the development and the main properties of Nb3Sn composite superconducting wires and Rutherford cables, and details of accelerator dipole designs, technologies and performance. Special attention is given to innovative features of the developed Nb3Sn magnets. The book concludes with a discussion of accelerator magnet needs for future circular colliders.; Broadens our understanding of design and performance limits of high-field Nb3Sn accelerator magnets for a future very high energy hadron collider Offers beginners a concise overview of the relevant design concepts for a new generation of superconducting accelerator magnets based on Nb3Sn superconductor Illustrates the complete process of accelerator magnet design and fabrication Provides a contemporary review and assessment of the past experience with Nb3Sn high-field dipole accelerator magnets Identifies the main open R&D issues for Nb3Sn high-field dipole magnets This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.
Publisher:
ISBN: 9781013271359
Category : Science
Languages : en
Pages : 460
Book Description
This open access book is written by world-recognized experts in the fields of applied superconductivity and superconducting accelerator magnet technologies. It provides a contemporary review and assessment of the experience in research and development of high-field accelerator dipole magnets based on Nb3Sn superconductor over the past five decades. The reader attains clear insight into the development and the main properties of Nb3Sn composite superconducting wires and Rutherford cables, and details of accelerator dipole designs, technologies and performance. Special attention is given to innovative features of the developed Nb3Sn magnets. The book concludes with a discussion of accelerator magnet needs for future circular colliders.; Broadens our understanding of design and performance limits of high-field Nb3Sn accelerator magnets for a future very high energy hadron collider Offers beginners a concise overview of the relevant design concepts for a new generation of superconducting accelerator magnets based on Nb3Sn superconductor Illustrates the complete process of accelerator magnet design and fabrication Provides a contemporary review and assessment of the past experience with Nb3Sn high-field dipole accelerator magnets Identifies the main open R&D issues for Nb3Sn high-field dipole magnets This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.
Field Computation for Accelerator Magnets
Author: Stephan Russenschuck
Publisher: John Wiley & Sons
ISBN: 3527635475
Category : Science
Languages : en
Pages : 778
Book Description
Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning. Included topics: Technological challenges for the Large Hadron Collider at CERN Algebraic structures and vector fields Classical vector analysis Foundations of analytical field computation Fields and Potentials of line currents Harmonic fields The conceptual design of iron- and coil-dominated magnets Solenoids Complex analysis methods for magnet design Elementary beam optics and magnet polarities Numerical field calculation using finite- and boundary-elements Mesh generation Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents Quench simulation and magnet protection Mathematical optimization techniques using genetic and deterministic algorithms Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.
Publisher: John Wiley & Sons
ISBN: 3527635475
Category : Science
Languages : en
Pages : 778
Book Description
Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning. Included topics: Technological challenges for the Large Hadron Collider at CERN Algebraic structures and vector fields Classical vector analysis Foundations of analytical field computation Fields and Potentials of line currents Harmonic fields The conceptual design of iron- and coil-dominated magnets Solenoids Complex analysis methods for magnet design Elementary beam optics and magnet polarities Numerical field calculation using finite- and boundary-elements Mesh generation Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents Quench simulation and magnet protection Mathematical optimization techniques using genetic and deterministic algorithms Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 602
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 602
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
High-Luminosity Large Hadron Collider ( HL-LHC )
Author: G.. Apollinari
Publisher:
ISBN: 9789290834700
Category :
Languages : en
Pages : 516
Book Description
Publisher:
ISBN: 9789290834700
Category :
Languages : en
Pages : 516
Book Description
Particle Physics Reference Library
Author: Stephen Myers
Publisher: Springer Nature
ISBN: 303034245X
Category : Heavy ions
Languages : en
Pages : 867
Book Description
This third open access volume of the handbook series deals with accelerator physics, design, technology and operations, as well as with beam optics, dynamics and diagnostics. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access.
Publisher: Springer Nature
ISBN: 303034245X
Category : Heavy ions
Languages : en
Pages : 867
Book Description
This third open access volume of the handbook series deals with accelerator physics, design, technology and operations, as well as with beam optics, dynamics and diagnostics. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access.
Theory and Design of Charged Particle Beams
Author: Martin Reiser
Publisher: John Wiley & Sons
ISBN: 3527617639
Category : Science
Languages : en
Pages : 634
Book Description
Although particle accelerators are the book's main thrust, it offers a broad synoptic description of beams which applies to a wide range of other devices such as low-energy focusing and transport systems and high-power microwave sources. Develops material from first principles, basic equations and theorems in a systematic way. Assumptions and approximations are clearly indicated. Discusses underlying physics and validity of theoretical relationships, design formulas and scaling laws. Features a significant amount of recent work including image effects and the Boltzmann line charge density profiles in bunched beams.
Publisher: John Wiley & Sons
ISBN: 3527617639
Category : Science
Languages : en
Pages : 634
Book Description
Although particle accelerators are the book's main thrust, it offers a broad synoptic description of beams which applies to a wide range of other devices such as low-energy focusing and transport systems and high-power microwave sources. Develops material from first principles, basic equations and theorems in a systematic way. Assumptions and approximations are clearly indicated. Discusses underlying physics and validity of theoretical relationships, design formulas and scaling laws. Features a significant amount of recent work including image effects and the Boltzmann line charge density profiles in bunched beams.
Handbook of Accelerator Physics and Engineering
Author: Alexander Wu Chao
Publisher: World Scientific
ISBN: 9814415855
Category : Science
Languages : en
Pages : 849
Book Description
Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing more than 100 new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to the common formulae of previous compilations, hard-to-find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world''s most able practitioners of the art and science of accelerators.The eight chapters include both theoretical and practical matters as well as an extensive glossary of accelerator types. Chapters on beam dynamics and electromagnetic and nuclear interactions deal with linear and nonlinear single particle and collective effects including spin motion, beam-environment, beam-beam, beam-electron, beam-ion and intrabeam interactions. The impedance concept and related calculations are dealt with at length as are the instabilities associated with the various interactions mentioned. A chapter on operational considerations includes discussions on the assessment and correction of orbit and optics errors, real-time feedbacks, generation of short photon pulses, bunch compression, tuning of normal and superconducting linacs, energy recovery linacs, free electron lasers, cooling, space-charge compensation, brightness of light sources, collider luminosity optimization and collision schemes. Chapters on mechanical and electrical considerations present material data and important aspects of component design including heat transfer and refrigeration. Hardware systems for particle sources, feedback systems, confinement and acceleration (both normal conducting and superconducting) receive detailed treatment in a subsystems chapter, beam measurement techniques and apparatus being treated therein as well. The closing chapter gives data and methods for radiation protection computations as well as much data on radiation damage to various materials and devices.A detailed name and subject index is provided together with reliable references to the literature where the most detailed information available on all subjects treated can be found.
Publisher: World Scientific
ISBN: 9814415855
Category : Science
Languages : en
Pages : 849
Book Description
Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing more than 100 new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to the common formulae of previous compilations, hard-to-find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world''s most able practitioners of the art and science of accelerators.The eight chapters include both theoretical and practical matters as well as an extensive glossary of accelerator types. Chapters on beam dynamics and electromagnetic and nuclear interactions deal with linear and nonlinear single particle and collective effects including spin motion, beam-environment, beam-beam, beam-electron, beam-ion and intrabeam interactions. The impedance concept and related calculations are dealt with at length as are the instabilities associated with the various interactions mentioned. A chapter on operational considerations includes discussions on the assessment and correction of orbit and optics errors, real-time feedbacks, generation of short photon pulses, bunch compression, tuning of normal and superconducting linacs, energy recovery linacs, free electron lasers, cooling, space-charge compensation, brightness of light sources, collider luminosity optimization and collision schemes. Chapters on mechanical and electrical considerations present material data and important aspects of component design including heat transfer and refrigeration. Hardware systems for particle sources, feedback systems, confinement and acceleration (both normal conducting and superconducting) receive detailed treatment in a subsystems chapter, beam measurement techniques and apparatus being treated therein as well. The closing chapter gives data and methods for radiation protection computations as well as much data on radiation damage to various materials and devices.A detailed name and subject index is provided together with reliable references to the literature where the most detailed information available on all subjects treated can be found.