Author: Vladislav A. Sadykov
Publisher: Elsevier
ISBN: 012814808X
Category : Technology & Engineering
Languages : en
Pages : 590
Book Description
Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications outlines new approaches to the synthesis of nanomaterials (synthesis in flow conditions, laser electrodispersion of single metals or alloys on carbon or oxide supports, mechanochemistry, sol-gel routes, etc.) to provide systems with a narrow particle size distribution, controlled metal-support interaction and nanocomposites with uniform spatial distribution of domains of different phases, even in dense sintered materials. Methods for characterization of real structure and surface properties of nanomaterials are discussed, including synchrotron radiation diffraction and X-ray photoelectron spectroscopy studies, neutronography, transmission/scanning electron microscopy with elemental analysis, and more. The book covers the effect of nanosystems' composition, bulk and surface properties, metal-support interaction, particle size and morphology, deposition density, etc. on their functional properties (transport features, catalytic activity and reaction mechanism). Finally, it includes examples of various developed nanostructured solid electrolytes and mixed ionic-electronic conductors as materials in solid oxide fuel cells and asymmetric supported membranes for oxygen and hydrogen separation. - Outlines synthetic and characterization methods for nanocatalysts - Relates nanocatalysts' properties to their specific applications - Proposes optimization methods aiming at specific applications
Advanced Nanomaterials for Catalysis and Energy
Author: Vladislav A. Sadykov
Publisher: Elsevier
ISBN: 012814808X
Category : Technology & Engineering
Languages : en
Pages : 590
Book Description
Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications outlines new approaches to the synthesis of nanomaterials (synthesis in flow conditions, laser electrodispersion of single metals or alloys on carbon or oxide supports, mechanochemistry, sol-gel routes, etc.) to provide systems with a narrow particle size distribution, controlled metal-support interaction and nanocomposites with uniform spatial distribution of domains of different phases, even in dense sintered materials. Methods for characterization of real structure and surface properties of nanomaterials are discussed, including synchrotron radiation diffraction and X-ray photoelectron spectroscopy studies, neutronography, transmission/scanning electron microscopy with elemental analysis, and more. The book covers the effect of nanosystems' composition, bulk and surface properties, metal-support interaction, particle size and morphology, deposition density, etc. on their functional properties (transport features, catalytic activity and reaction mechanism). Finally, it includes examples of various developed nanostructured solid electrolytes and mixed ionic-electronic conductors as materials in solid oxide fuel cells and asymmetric supported membranes for oxygen and hydrogen separation. - Outlines synthetic and characterization methods for nanocatalysts - Relates nanocatalysts' properties to their specific applications - Proposes optimization methods aiming at specific applications
Publisher: Elsevier
ISBN: 012814808X
Category : Technology & Engineering
Languages : en
Pages : 590
Book Description
Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications outlines new approaches to the synthesis of nanomaterials (synthesis in flow conditions, laser electrodispersion of single metals or alloys on carbon or oxide supports, mechanochemistry, sol-gel routes, etc.) to provide systems with a narrow particle size distribution, controlled metal-support interaction and nanocomposites with uniform spatial distribution of domains of different phases, even in dense sintered materials. Methods for characterization of real structure and surface properties of nanomaterials are discussed, including synchrotron radiation diffraction and X-ray photoelectron spectroscopy studies, neutronography, transmission/scanning electron microscopy with elemental analysis, and more. The book covers the effect of nanosystems' composition, bulk and surface properties, metal-support interaction, particle size and morphology, deposition density, etc. on their functional properties (transport features, catalytic activity and reaction mechanism). Finally, it includes examples of various developed nanostructured solid electrolytes and mixed ionic-electronic conductors as materials in solid oxide fuel cells and asymmetric supported membranes for oxygen and hydrogen separation. - Outlines synthetic and characterization methods for nanocatalysts - Relates nanocatalysts' properties to their specific applications - Proposes optimization methods aiming at specific applications
Catalysis by Materials with Well-Defined Structures
Author: Zili Wu
Publisher: Academic Press
ISBN: 0128013400
Category : Technology & Engineering
Languages : en
Pages : 393
Book Description
Catalysis by Materials with Well-Defined Structures examines the latest developments in the use of model systems in fundamental catalytic science. A team of prominent experts provides authoritative, first-hand information, helping readers better understand heterogeneous catalysis by utilizing model catalysts based on uniformly nanostructured materials. The text addresses topics and issues related to material synthesis, characterization, catalytic reactions, surface chemistry, mechanism, and theoretical modeling, and features a comprehensive review of recent advances in catalytic studies on nanomaterials with well-defined structures, including nanoshaped metals and metal oxides, nanoclusters, and single sites in the areas of heterogeneous thermal catalysis, photocatalysis, and electrocatalysis. Users will find this book to be an invaluable, authoritative source of information for both the surface scientist and the catalysis practitioner - Outlines the importance of nanomaterials and their potential as catalysts - Provides detailed information on synthesis and characterization of nanomaterials with well-defined structures, relating surface activity to catalytic activity - Details how to establish the structure-catalysis relationship and how to reveal the surface chemistry and surface structure of catalysts - Offers examples on various in situ characterization instrumental techniques - Includes in-depth theoretical modeling utilizing advanced Density Functional Theory (DFT) methods
Publisher: Academic Press
ISBN: 0128013400
Category : Technology & Engineering
Languages : en
Pages : 393
Book Description
Catalysis by Materials with Well-Defined Structures examines the latest developments in the use of model systems in fundamental catalytic science. A team of prominent experts provides authoritative, first-hand information, helping readers better understand heterogeneous catalysis by utilizing model catalysts based on uniformly nanostructured materials. The text addresses topics and issues related to material synthesis, characterization, catalytic reactions, surface chemistry, mechanism, and theoretical modeling, and features a comprehensive review of recent advances in catalytic studies on nanomaterials with well-defined structures, including nanoshaped metals and metal oxides, nanoclusters, and single sites in the areas of heterogeneous thermal catalysis, photocatalysis, and electrocatalysis. Users will find this book to be an invaluable, authoritative source of information for both the surface scientist and the catalysis practitioner - Outlines the importance of nanomaterials and their potential as catalysts - Provides detailed information on synthesis and characterization of nanomaterials with well-defined structures, relating surface activity to catalytic activity - Details how to establish the structure-catalysis relationship and how to reveal the surface chemistry and surface structure of catalysts - Offers examples on various in situ characterization instrumental techniques - Includes in-depth theoretical modeling utilizing advanced Density Functional Theory (DFT) methods
Ordered Porous Solids
Author: Valentin Valtchev
Publisher: Elsevier
ISBN: 0080932452
Category : Science
Languages : en
Pages : 813
Book Description
The developments in the area of ordered nanoporous solids have moved beyond the traditional catalytic and separation uses and given rise to a wide variety of new applications in different branches of chemistry, physics, material science, etc. The activity in this area is due to the outstanding properties of nanoporous materials that have attracted the attention of researchers from different communities. However, recent achievements in a specific field often remain out of the focus of collaborating communities. This work summarizes the latest developments and prospects in the area of ordered porous solids, including synthetic layered materials (clays), microporous zeolite-type materials, ordered mesoporous solids, metal-organic-framework compounds (MOFs), carbon, etc. All aspects, from synthesis via comprehensive characterization to the advanced applications of ordered porous materials, are presented. The chapters are written by leading experts in their respective fields with an emphasis on recent progress and the state of the art. - Summarizes the latest developments in the field of ordered nanoporous solids - Presents state-of-the-art coverage of applications related to porous solids - Incorporates 28 contributions from experts across the disciplines
Publisher: Elsevier
ISBN: 0080932452
Category : Science
Languages : en
Pages : 813
Book Description
The developments in the area of ordered nanoporous solids have moved beyond the traditional catalytic and separation uses and given rise to a wide variety of new applications in different branches of chemistry, physics, material science, etc. The activity in this area is due to the outstanding properties of nanoporous materials that have attracted the attention of researchers from different communities. However, recent achievements in a specific field often remain out of the focus of collaborating communities. This work summarizes the latest developments and prospects in the area of ordered porous solids, including synthetic layered materials (clays), microporous zeolite-type materials, ordered mesoporous solids, metal-organic-framework compounds (MOFs), carbon, etc. All aspects, from synthesis via comprehensive characterization to the advanced applications of ordered porous materials, are presented. The chapters are written by leading experts in their respective fields with an emphasis on recent progress and the state of the art. - Summarizes the latest developments in the field of ordered nanoporous solids - Presents state-of-the-art coverage of applications related to porous solids - Incorporates 28 contributions from experts across the disciplines
Green Synthesis, Characterization and Applications of Nanoparticles
Author: Ashutosh Kumar Shukla
Publisher: Elsevier
ISBN: 0081025807
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
Green Synthesis, Characterization and Applications of Nanoparticles shows how eco-friendly nanoparticles are engineered and used. In particular, metal nanoparticles, metal oxide nanoparticles and other categories of nanoparticles are discussed. The book outlines a range of methodologies and explores the appropriate use of each. Characterization methods include spectroscopic, microscopic and diffraction methods, but magnetic resonance methods are also included as they can be used to understand the mechanism of nanoparticle synthesis using organisms. Applications covered include targeted drug delivery, water purification and hydrogen generation. This is an important research resource for those wishing to learn more about how eco-efficient nanoparticles can best be used. Theoretical details and mathematical derivations are kept to a necessary minimum to suit the need of interdisciplinary audiences and those who may be relatively new to the field. - Explores recent trends in growth, characterization, properties and applications of nanoparticles - Gives readers an understanding on how they are applied through the use of case studies and examples - Assesses the advantages and disadvantages of a variety of synthesis and characterization techniques for green nanoparticles in different situations
Publisher: Elsevier
ISBN: 0081025807
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
Green Synthesis, Characterization and Applications of Nanoparticles shows how eco-friendly nanoparticles are engineered and used. In particular, metal nanoparticles, metal oxide nanoparticles and other categories of nanoparticles are discussed. The book outlines a range of methodologies and explores the appropriate use of each. Characterization methods include spectroscopic, microscopic and diffraction methods, but magnetic resonance methods are also included as they can be used to understand the mechanism of nanoparticle synthesis using organisms. Applications covered include targeted drug delivery, water purification and hydrogen generation. This is an important research resource for those wishing to learn more about how eco-efficient nanoparticles can best be used. Theoretical details and mathematical derivations are kept to a necessary minimum to suit the need of interdisciplinary audiences and those who may be relatively new to the field. - Explores recent trends in growth, characterization, properties and applications of nanoparticles - Gives readers an understanding on how they are applied through the use of case studies and examples - Assesses the advantages and disadvantages of a variety of synthesis and characterization techniques for green nanoparticles in different situations
Nanocatalysts
Author: Indrajit Sinha
Publisher: BoD – Books on Demand
ISBN: 1789841593
Category : Science
Languages : en
Pages : 170
Book Description
Nanocatalysis is a topical area of research that has huge potential. It attempts to merge the advantages of heterogeneous and homogeneous catalysis. The collection of articles in this book treats the topics of specificity, activity, reusability, and stability of the catalyst and presents a compilation of articles that focuses on different aspects of these issues.
Publisher: BoD – Books on Demand
ISBN: 1789841593
Category : Science
Languages : en
Pages : 170
Book Description
Nanocatalysis is a topical area of research that has huge potential. It attempts to merge the advantages of heterogeneous and homogeneous catalysis. The collection of articles in this book treats the topics of specificity, activity, reusability, and stability of the catalyst and presents a compilation of articles that focuses on different aspects of these issues.
Nanomaterials in Catalysis
Author: Philippe Serp
Publisher: John Wiley & Sons
ISBN: 3527656898
Category : Science
Languages : en
Pages : 741
Book Description
Nanocatalysis has emerged as a field at the interface between homogeneous and heterogeneous catalysis and offers unique solutions to the demanding requirements for catalyst improvement. Heterogeneous catalysis represents one of the oldest commercial applications of nanoscience and nanoparticles of metals, semiconductors, oxides, and other compounds have been widely used for important chemical reactions. The main focus of this fi eld is the development of well-defined catalysts, which may include both metal nanoparticles and a nanomaterial as the support. These nanocatalysts should display the benefits of both homogenous and heterogeneous catalysts, such as high efficiency and selectivity, stability and easy recovery/recycling. The concept of nanocatalysis is outlined in this book and, in particular, it provides a comprehensive overview of the science of colloidal nanoparticles. A broad range of topics, from the fundamentals to applications in catalysis, are covered, without excluding micelles, nanoparticles in ionic liquids, dendrimers, nanotubes, and nanooxides, as well as modeling, and the characterization of nanocatalysts, making it an indispensable reference for both researchers at universities and professionals in industry.
Publisher: John Wiley & Sons
ISBN: 3527656898
Category : Science
Languages : en
Pages : 741
Book Description
Nanocatalysis has emerged as a field at the interface between homogeneous and heterogeneous catalysis and offers unique solutions to the demanding requirements for catalyst improvement. Heterogeneous catalysis represents one of the oldest commercial applications of nanoscience and nanoparticles of metals, semiconductors, oxides, and other compounds have been widely used for important chemical reactions. The main focus of this fi eld is the development of well-defined catalysts, which may include both metal nanoparticles and a nanomaterial as the support. These nanocatalysts should display the benefits of both homogenous and heterogeneous catalysts, such as high efficiency and selectivity, stability and easy recovery/recycling. The concept of nanocatalysis is outlined in this book and, in particular, it provides a comprehensive overview of the science of colloidal nanoparticles. A broad range of topics, from the fundamentals to applications in catalysis, are covered, without excluding micelles, nanoparticles in ionic liquids, dendrimers, nanotubes, and nanooxides, as well as modeling, and the characterization of nanocatalysts, making it an indispensable reference for both researchers at universities and professionals in industry.
Electrode Materials for Energy Storage and Conversion
Author: Mesfin A. Kebede
Publisher: CRC Press
ISBN: 1000457869
Category : Science
Languages : en
Pages : 518
Book Description
This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.
Publisher: CRC Press
ISBN: 1000457869
Category : Science
Languages : en
Pages : 518
Book Description
This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.
Nanocatalysis
Author: Vivek Polshettiwar
Publisher: John Wiley & Sons
ISBN: 111814886X
Category : Technology & Engineering
Languages : en
Pages : 755
Book Description
Exhibiting both homogeneous and heterogeneous catalytic properties, nanocatalysts allow for rapid and selective chemical transformations, with the benefits of excellent product yield and ease of catalyst separation and recovery. This book reviews the catalytic performance and the synthesis and characterization of nanocatalysts, examining the current state of the art and pointing the way towards new avenues of research. Moreover, the authors discuss new and emerging applications of nanocatalysts and nanocatalysis, from pharmaceuticals to fine chemicals to renewable energy to biotransformations. Nanocatalysis features contributions from leading research groups around the world. These contributions reflect a thorough review of the current literature as well as the authors’ first-hand experience designing and synthesizing nanocatalysts and developing new applications for them. The book’s nineteen chapters offer a broad perspective, covering: Nanocatalysis for carbon-carbon and carbon-heteroatom coupling reactions Nanocatalysis for various organic transformations in fine chemical synthesis Nanocatalysis for oxidation, hydrogenation, and other related reactions Nanomaterial-based photocatalysis and biocatalysis Nanocatalysts to produce non-conventional energy such as hydrogen and biofuels Nanocatalysts and nano-biocatalysts in the chemical industry Readers will also learn about the latest spectroscopic and microscopy tools used in advanced characterization methods that shed new light on nanocatalysts and nanocatalysis. Moreover, the authors offer expert advice to help readers develop strategies to improve catalytic performance. Summarizing and reviewing all the most important advances in nanocatalysis over the last two decades, this book explains the many advantages of nanocatalysts over conventional homogeneous and heterogeneous catalysts, providing the information and guidance needed for designing green, sustainable catalytic processes.
Publisher: John Wiley & Sons
ISBN: 111814886X
Category : Technology & Engineering
Languages : en
Pages : 755
Book Description
Exhibiting both homogeneous and heterogeneous catalytic properties, nanocatalysts allow for rapid and selective chemical transformations, with the benefits of excellent product yield and ease of catalyst separation and recovery. This book reviews the catalytic performance and the synthesis and characterization of nanocatalysts, examining the current state of the art and pointing the way towards new avenues of research. Moreover, the authors discuss new and emerging applications of nanocatalysts and nanocatalysis, from pharmaceuticals to fine chemicals to renewable energy to biotransformations. Nanocatalysis features contributions from leading research groups around the world. These contributions reflect a thorough review of the current literature as well as the authors’ first-hand experience designing and synthesizing nanocatalysts and developing new applications for them. The book’s nineteen chapters offer a broad perspective, covering: Nanocatalysis for carbon-carbon and carbon-heteroatom coupling reactions Nanocatalysis for various organic transformations in fine chemical synthesis Nanocatalysis for oxidation, hydrogenation, and other related reactions Nanomaterial-based photocatalysis and biocatalysis Nanocatalysts to produce non-conventional energy such as hydrogen and biofuels Nanocatalysts and nano-biocatalysts in the chemical industry Readers will also learn about the latest spectroscopic and microscopy tools used in advanced characterization methods that shed new light on nanocatalysts and nanocatalysis. Moreover, the authors offer expert advice to help readers develop strategies to improve catalytic performance. Summarizing and reviewing all the most important advances in nanocatalysis over the last two decades, this book explains the many advantages of nanocatalysts over conventional homogeneous and heterogeneous catalysts, providing the information and guidance needed for designing green, sustainable catalytic processes.
The Chemistry of Nanostructured Materials
Author: Peidong Yang
Publisher: World Scientific
ISBN: 981431305X
Category : Science
Languages : en
Pages : 338
Book Description
This book is a sequel to the first volume of The Chemistry of Nanostructured Materials. It covers the most exciting developments in the nanostructured materials field for the past five to ten years, with a particular focus on their applications in energy conversion and energy storage. Prominent authors of recognized authority in the field contribute their expertise in the review chapters.
Publisher: World Scientific
ISBN: 981431305X
Category : Science
Languages : en
Pages : 338
Book Description
This book is a sequel to the first volume of The Chemistry of Nanostructured Materials. It covers the most exciting developments in the nanostructured materials field for the past five to ten years, with a particular focus on their applications in energy conversion and energy storage. Prominent authors of recognized authority in the field contribute their expertise in the review chapters.
Nanoparticles in Catalysis
Author: Karine Philippot
Publisher: John Wiley & Sons
ISBN: 3527346074
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Nanoparticles in Catalysis Discover an essential overview of recent advances and trends in nanoparticle catalysis Catalysis in the presence of metal nanoparticles is an important and rapidly developing research field at the frontier of homogeneous and heterogeneous catalysis. In Nanoparticles in Catalysis, accomplished chemists and authors Karine Philippot and Alain Roucoux deliver a comprehensive guide to the key aspects of nanoparticle catalysis, ranging from synthesis, activation methodology, characterization, and theoretical modeling, to application in important catalytic reactions, like hydrogen production and biomass conversion. The book offers readers a review of modern and efficient tools for the synthesis of nanoparticles in solution or onto supports. It emphasizes the application of metal nanoparticles in important catalytic reactions and includes chapters on activation methodology and supported nanoclusters. Written by an international team of leading voices in the field, Nanoparticles in Catalysis is an indispensable resource for researchers and professionals in academia and industry alike. Readers will also benefit from the inclusion of: A thorough introduction to New Trends in the Design of Metal Nanoparticles and Derived Nanomaterials for Catalysis An exploration of Dynamic Catalysis and the Interface Between Molecular and Heterogeneous Catalysts A practical discussion of Metal Nanoparticles in Water: A Relevant Toolbox for Green Catalysis Organometallic Metal Nanoparticles for Catalysis A concise treatment of the opportunities and challenges of CO2 Hydrogenation to Oxygenated Chemicals Over Supported Nanoparticle Catalysts Perfect for catalytic, organic, inorganic, and physical chemists, Nanoparticles in Catalysis will also earn a place in the libraries of chemists working with organometallics and materials scientists seeking a one-stop resource with expert knowledge on the synthesis and characterization of nanoparticle catalysis.
Publisher: John Wiley & Sons
ISBN: 3527346074
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Nanoparticles in Catalysis Discover an essential overview of recent advances and trends in nanoparticle catalysis Catalysis in the presence of metal nanoparticles is an important and rapidly developing research field at the frontier of homogeneous and heterogeneous catalysis. In Nanoparticles in Catalysis, accomplished chemists and authors Karine Philippot and Alain Roucoux deliver a comprehensive guide to the key aspects of nanoparticle catalysis, ranging from synthesis, activation methodology, characterization, and theoretical modeling, to application in important catalytic reactions, like hydrogen production and biomass conversion. The book offers readers a review of modern and efficient tools for the synthesis of nanoparticles in solution or onto supports. It emphasizes the application of metal nanoparticles in important catalytic reactions and includes chapters on activation methodology and supported nanoclusters. Written by an international team of leading voices in the field, Nanoparticles in Catalysis is an indispensable resource for researchers and professionals in academia and industry alike. Readers will also benefit from the inclusion of: A thorough introduction to New Trends in the Design of Metal Nanoparticles and Derived Nanomaterials for Catalysis An exploration of Dynamic Catalysis and the Interface Between Molecular and Heterogeneous Catalysts A practical discussion of Metal Nanoparticles in Water: A Relevant Toolbox for Green Catalysis Organometallic Metal Nanoparticles for Catalysis A concise treatment of the opportunities and challenges of CO2 Hydrogenation to Oxygenated Chemicals Over Supported Nanoparticle Catalysts Perfect for catalytic, organic, inorganic, and physical chemists, Nanoparticles in Catalysis will also earn a place in the libraries of chemists working with organometallics and materials scientists seeking a one-stop resource with expert knowledge on the synthesis and characterization of nanoparticle catalysis.