Design, Synthesis and Characterization of Self-assembling Conjugated Polymers for Use in Organic Electronic Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Design, Synthesis and Characterization of Self-assembling Conjugated Polymers for Use in Organic Electronic Applications PDF full book. Access full book title Design, Synthesis and Characterization of Self-assembling Conjugated Polymers for Use in Organic Electronic Applications by Kathy Beckner Woody. Download full books in PDF and EPUB format.

Design, Synthesis and Characterization of Self-assembling Conjugated Polymers for Use in Organic Electronic Applications

Design, Synthesis and Characterization of Self-assembling Conjugated Polymers for Use in Organic Electronic Applications PDF Author: Kathy Beckner Woody
Publisher:
ISBN:
Category : Organic electronics
Languages : en
Pages :

Book Description
Conjugated polymers comprise some of the most promising materials for new technologies such as organic field effect transistors, solar light harvesting technology and sensing devices. In spite of tremendous research initiatives in materials chemistry, the potential to optimize device performance and develop new technologies is remarkable. Understanding relationships between the structure of conjugated polymers and their electronic properties is critical to improving device performance. The design and synthesis of new materials which self-organize into ordered nanostructures creates opportunities to establish relationships between electronic properties and morphology or molecular packing. This thesis details our progress in the development of synthetic routes which provide access to new classes of conjugated polymers that contain dissimilar side chains that segregate or dissimilar conjugated blocks which phase separate, and summarizes our initial attempts to characterize these materials. Poly(1,4-phenylene ethynylene)s (PPEs) have been used in a variety of organic electronic applications, most notably as fluorescent sensors. Using traditional synthetic methods, asymmetrically disubstituted PPEs have irregular placement of side chains on the conjugated backbone. Herein, we establish the first synthetic route to an asymmetrically substituted regioregular PPEs. The initial PPEs in this study have different lengths of alkoxy side chains, and both regioregular and regiorandom analogs are synthesized and characterized for comparison. The design of amphiphilic structures provides additional opportunities for side chains to influence the molecular packing and electronic properties of conjugated polymers. A new class of regioregular, amphiphilic PPEs has been prepared bearing alkoxy and semifluoroalkoxy side chains, which have a tendency to phase separate. Fully conjugated block copolymers can provide access to interesting new morphologies as a result of phase separation of the conjugated blocks. In particular, donor-acceptor block copolymers that phase separate into electron rich and electron poor domains may be advantageous in organic electronic devices such as bulk heterojunction solar cells, of which the performance relies on precise control of the interface between electron donating and accepting materials. The availability of donor-acceptor block copolymers is limited, largely due to the challenges associated with synthesizing these materials. In this thesis, two new synthetic routes to donor-acceptor block copolymers are established. These methods both utilize the catalyst transfer condensation polymerization, which proceeds by a chain growth mechanism. The first example entails the synthesis of a monofunctionalized, telechelic poly(3-alkylthiophene) which can be coupled to electron accepting polymers in a subsequent reaction. The other method describes the first example of a one-pot synthesis of a donor-acceptor diblock copolymer. The methods of synthesis are described, and characterization of the block copolymers is reported.

Design, Synthesis and Characterization of Self-assembling Conjugated Polymers for Use in Organic Electronic Applications

Design, Synthesis and Characterization of Self-assembling Conjugated Polymers for Use in Organic Electronic Applications PDF Author: Kathy Beckner Woody
Publisher:
ISBN:
Category : Organic electronics
Languages : en
Pages :

Book Description
Conjugated polymers comprise some of the most promising materials for new technologies such as organic field effect transistors, solar light harvesting technology and sensing devices. In spite of tremendous research initiatives in materials chemistry, the potential to optimize device performance and develop new technologies is remarkable. Understanding relationships between the structure of conjugated polymers and their electronic properties is critical to improving device performance. The design and synthesis of new materials which self-organize into ordered nanostructures creates opportunities to establish relationships between electronic properties and morphology or molecular packing. This thesis details our progress in the development of synthetic routes which provide access to new classes of conjugated polymers that contain dissimilar side chains that segregate or dissimilar conjugated blocks which phase separate, and summarizes our initial attempts to characterize these materials. Poly(1,4-phenylene ethynylene)s (PPEs) have been used in a variety of organic electronic applications, most notably as fluorescent sensors. Using traditional synthetic methods, asymmetrically disubstituted PPEs have irregular placement of side chains on the conjugated backbone. Herein, we establish the first synthetic route to an asymmetrically substituted regioregular PPEs. The initial PPEs in this study have different lengths of alkoxy side chains, and both regioregular and regiorandom analogs are synthesized and characterized for comparison. The design of amphiphilic structures provides additional opportunities for side chains to influence the molecular packing and electronic properties of conjugated polymers. A new class of regioregular, amphiphilic PPEs has been prepared bearing alkoxy and semifluoroalkoxy side chains, which have a tendency to phase separate. Fully conjugated block copolymers can provide access to interesting new morphologies as a result of phase separation of the conjugated blocks. In particular, donor-acceptor block copolymers that phase separate into electron rich and electron poor domains may be advantageous in organic electronic devices such as bulk heterojunction solar cells, of which the performance relies on precise control of the interface between electron donating and accepting materials. The availability of donor-acceptor block copolymers is limited, largely due to the challenges associated with synthesizing these materials. In this thesis, two new synthetic routes to donor-acceptor block copolymers are established. These methods both utilize the catalyst transfer condensation polymerization, which proceeds by a chain growth mechanism. The first example entails the synthesis of a monofunctionalized, telechelic poly(3-alkylthiophene) which can be coupled to electron accepting polymers in a subsequent reaction. The other method describes the first example of a one-pot synthesis of a donor-acceptor diblock copolymer. The methods of synthesis are described, and characterization of the block copolymers is reported.

Conjugated Polymers for Next-Generation Applications, Volume 1

Conjugated Polymers for Next-Generation Applications, Volume 1 PDF Author: Vijay Kumar
Publisher: Woodhead Publishing
ISBN: 0128236345
Category : Technology & Engineering
Languages : en
Pages : 618

Book Description
Conjugated Polymers for Next-Generation Applications, Volume One: Synthesis, Properties and Optoelectrochemical Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book’s emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering. Provides an overview of the synthesis and functionalization of conjugated polymers and their composites Reviews important photovoltaics applications of conjugated polymeric materials, including their use in energy storage, batteries and optoelectronic devices Discusses conjugated polymers and their application in electronics for sensing, bioelectronics, memory, and more

Conjugated Polymers for Organic Electronics

Conjugated Polymers for Organic Electronics PDF Author: Andrew Grimsdale
Publisher: Cambridge University Press
ISBN: 1009566032
Category : Technology & Engineering
Languages : en
Pages : 277

Book Description
Focusing on how conjugated polymers can be designed and made for use in efficient organic electronic devices, this book covers the tools for future development of more environmentally and economically friendly devices. Including examples of interdisciplinary science, it exemplifies how chemists and physicists work together to enable the design and synthesis of high-performance material in devices, allowing polymer-based electronic devices to become viable commercial products. It provides the main classes of conjugated polymers and their applications in organic electronic devices such as transistors, light-emitting diodes, and solar cells, making this a comprehensive introduction. This complete guide includes the methods for making conjugated polymers, the properties and specific structures that make them suitable for use, and how their synthesis can be optimised to improve device performance. Written by experts in the field, this is the ideal guide for researchers and practitioners across materials science, physics, chemistry, and electrical engineering.

Conjugated Polymers for Next-Generation Applications, Volume 2

Conjugated Polymers for Next-Generation Applications, Volume 2 PDF Author: Vijay Kumar
Publisher: Woodhead Publishing
ISBN: 0128240954
Category : Technology & Engineering
Languages : en
Pages : 443

Book Description
Conjugated Polymers for Next-Generation Applications, Volume Two: Energy Storage Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book’s emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering. Provides an overview of the synthesis and functionalization of conjugated polymers and their composites Reviews important photovoltaics applications of conjugated polymeric materials, including their use in energy storage, batteries and optoelectronic devices Discusses conjugated polymers and their application in electronics for sensing, bioelectronics, memory, and more

Organic Radical Polymers

Organic Radical Polymers PDF Author: Sanjoy Mukherjee
Publisher: Springer
ISBN: 3319585746
Category : Technology & Engineering
Languages : en
Pages : 85

Book Description
This book provides a detailed introduction to organic radical polymers and open-shell macromolecules. Functional macromolecules have led to marked increases in a wide range of technologies, and one of the fastest growing of these fields is that of organic electronic materials and devices. To date, synthetic and organic electronic device efforts have focused almost exclusively on closed-shell polymers despite the promise of open-shell macromolecules in myriad applications. This text represents the first comprehensive review of the design, synthesis, characterization, and device applications of open-shell polymers. In particular, it will summarize the impressive synthetic and device performance efforts that have been achieved with respect to energy storage, energy conversion, magnetic, and spintronic applications. By combining comprehensive reviews with a wealth of informative figures, the text provides the reader with a complete “molecules-to-modules” understanding of the state of the art in open-shell macromolecules. Moreover, the monograph highlights future directions for open-shell polymers in order to allow the reader to be part of the community that continues to build the field. In this way, the reader will gain a rapid understanding of the field and will have a clear pathway to utilize these materials in next-generation applications.

Design, Synthesis and Characterization of Conjugated Polymers for Photovoltaics and Electrochromics

Design, Synthesis and Characterization of Conjugated Polymers for Photovoltaics and Electrochromics PDF Author: Kim Bini
Publisher:
ISBN: 9789175978345
Category :
Languages : en
Pages :

Book Description


Design, Synthesis, and Application of Novel π-Conjugated Materials

Design, Synthesis, and Application of Novel π-Conjugated Materials PDF Author: Haichang Zhang
Publisher: Frontiers Media SA
ISBN: 2889664813
Category : Science
Languages : en
Pages : 126

Book Description


Design, Synthesis, and Application of Novel π-Conjugated Materials - Part II

Design, Synthesis, and Application of Novel π-Conjugated Materials - Part II PDF Author: Haichang Zhang
Publisher: Frontiers Media SA
ISBN: 2889716112
Category : Science
Languages : en
Pages : 70

Book Description


Design, Synthesis, Characterization and Study of Novel Conjugated Polymers

Design, Synthesis, Characterization and Study of Novel Conjugated Polymers PDF Author: Wu Chen
Publisher:
ISBN:
Category :
Languages : en
Pages : 296

Book Description


Design of Hybrid Conjugated Polymer Materials

Design of Hybrid Conjugated Polymer Materials PDF Author: Joseph J. Peterson
Publisher:
ISBN:
Category : Conjugated polymers
Languages : en
Pages : 205

Book Description
The research presented in this dissertation focuses on the design and synthesis of novel hybrid conjugated polymer materials using two different approaches: 1) inorganic/organic hybrid semiconductors through the incorporation of carboranes into the polymer structure and 2) the modification of surfaces with conjugated polymers via grafting approaches. Hybrid conjugated polymeric materials, which are materials or systems in which conjugated polymers are chemically integrated with non-traditional structures or surfaces, have the potential to harness useful properties from both components of the material to help overcome hurdles in their practical realization in polymer-based devices. This work is centered around the synthetic challenges of creating new hybrid conjugated systems and their potential for advancing the field of polymer-based electronics through both greater understanding of the behavior of hybrid systems, and access to improved performance and new applications. Chapter 1 highlights the potential applications and advantages for these hybrid systems, and provides some historical perspective, along with relevant background materials, to illustrate the rationale behind this work. Chapter 2 explores the synthesis of poly(fluorene)s with pendant carborane cages. The Ni(0) dehalogenative polymerization of a dibromofluorene with pendant carborane cages tethered to the bridging 9-position produced hybrid polymers produced polymers which combined the useful emissive characteristics of poly(fluorene) with the thermal and chemical stability of carborane cages. The materials were found to display increased glass transition temperatures and showed improved emission color stability after annealing at high temperatures relative to the non-hybrid polymer. The design and synthesis of a poly(fluorene)-based hybrid material with carborane cages in the backbone, rather than as pendant groups, begins in chapter 3. Poly(fluorene) with p-carborane in the backbone is synthesized and characterized, and the material is found to be a high MW, soluble blue emitter which shows a higher glass transition temperature and greater stability than a non-hybrid polymer. UV absorbance and fluorescence spectroscopy indicated some electronic interaction between the conjugated polymer and the cages, but they did not appear to be fully conjugated in the traditional sense. Chapter 4 describes the design, synthesis, and characterization of poly(fluorene) with o-carborane in the backbone. Profound changes in the behavior of the polymer, from its polymerization behavior to its emission characteristics, were observed and their origins are discussed. Experiments to explore the nature of the cage/polymer interactions were performed and possible applications which take advantage of the unique nature of the o-carborane hybrid polymer are explored and discussed. Hybrid conjugated polymer materials via grafting approaches to surfaces and surface modification are discussed starting in chapter 5. The synthesis of a dibromofluorene-based silane coupling agent for the surface functionalization of oxide surfaces is presented, and the surface directed Ni(0) dehalogenative polymerization of poly(dihexylfluorene) is explored Chapter 6 focuses on the exploration of conjugated polymer/cellulose hybrid materials. Surface medication of cellulose materials with monomer-like anchor points is discussed. Grafting of the modified cellulose with conjugated polymers was explored and the grafting of three different repeat structures based on fluorene-, fluorenevinylene-, and fluoreneethynylene motifs were optimized to provide a general route to cellulose/conjugated polymer hybrid materials. Characterization and possible applications of such hybrid materials are discussed. Finally, chapter 7 is devoted to the simultaneous surface patterning and functionalization of poly(2-hydroxyethylmethacrylate) thin films using a silane infusion-based wrinkling technique. While not a conjugated polymer system, the spontaneous patterning and functionalization methods explored in this chapter produce hybrid organic/inorganic polymer thin films which have applications that range from optics, to adhesion, to polymer-based electronics, and the research compliments the other chapters. The spontaneous generation of complex patterns, of a small scale approaching 100nm feature size, over a large area with simultaneous control over surface chemistry is explored. Examples of complex, hierarchically patterned films which integrate lithographic processes such as nanoimprint lithography and electron beam lithography with spontaneous patterning via wrinkling are presented.