Design of Miniaturized Radio-frequency DC-DC Power Converters PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Design of Miniaturized Radio-frequency DC-DC Power Converters PDF full book. Access full book title Design of Miniaturized Radio-frequency DC-DC Power Converters by Anthony David Sagneri. Download full books in PDF and EPUB format.

Design of Miniaturized Radio-frequency DC-DC Power Converters

Design of Miniaturized Radio-frequency DC-DC Power Converters PDF Author: Anthony David Sagneri
Publisher:
ISBN:
Category :
Languages : en
Pages : 325

Book Description
Power electronics appear in nearly every piece of modern electronic hardware, forming an essential conduit from electrical source to load. Portable electronics, an area where a premium is placed on size, weight, and cost, are driving the development of power systems with greater density and better manufacturability. This motivates a push to higher switching frequencies enabling smaller passive components and better integration. To realize these goals this thesis explores devices, circuits, and passives capable of operating efficiently into the VHF regime (30-300 MHz) and their integration into power electronic systems of high power density. A good integrated power MOSFET presages high-density converters. Previous VHF systems were demonstrated with bulky and expensive RF Lateral, Double-Diffused MOSFETs (LDMOSFET). We show that through a combination of layout optimization and safe operating area (SOA) extension integrated devices can achieve near-parity performance to their purpose-built RF discrete cousins over the desired operating regime. A layout optimization method demonstrating a 2x reduction in device loss is presented alongside experimental demonstration of SOA extension. Together the methods yield a 3x reduction in loss that bolsters the utility of the typical (and relatively inexpensive) LDMOS IC power process for VHF converters. Passive component synthesis is addressed in the context of an isolated VHF converter topology. We present a VHF topology where most of the magnetic energy storage is accomplished in a transformer that forms an essential part of the resonant network. The reduced component count aids in manufacturability and size, but places difficult requirements on the transformer design. An algorithm for synthesizing small and efficient air-core transformers with a fully-constrained inductance matrix is presented. Planar PCB transformers are fabricated and match the the design specifications to within 15%. They are 94% efficient and have a power density greater than 2kW per cubic inch. To take full advantage of good devices and printed passives, we develop an IC for the isolated converter having optimized power devices, and integrated gate driver, controller, and hotel functions. The chip is assembled into a complete converter system using the transformers and circuits described above. Flip-chip mounting is used to overcome bondwire parasitics, and reduce packaging volume. The final system achieves 75% efficiency at 75 MHz at 6W.

Design of Miniaturized Radio-frequency DC-DC Power Converters

Design of Miniaturized Radio-frequency DC-DC Power Converters PDF Author: Anthony David Sagneri
Publisher:
ISBN:
Category :
Languages : en
Pages : 325

Book Description
Power electronics appear in nearly every piece of modern electronic hardware, forming an essential conduit from electrical source to load. Portable electronics, an area where a premium is placed on size, weight, and cost, are driving the development of power systems with greater density and better manufacturability. This motivates a push to higher switching frequencies enabling smaller passive components and better integration. To realize these goals this thesis explores devices, circuits, and passives capable of operating efficiently into the VHF regime (30-300 MHz) and their integration into power electronic systems of high power density. A good integrated power MOSFET presages high-density converters. Previous VHF systems were demonstrated with bulky and expensive RF Lateral, Double-Diffused MOSFETs (LDMOSFET). We show that through a combination of layout optimization and safe operating area (SOA) extension integrated devices can achieve near-parity performance to their purpose-built RF discrete cousins over the desired operating regime. A layout optimization method demonstrating a 2x reduction in device loss is presented alongside experimental demonstration of SOA extension. Together the methods yield a 3x reduction in loss that bolsters the utility of the typical (and relatively inexpensive) LDMOS IC power process for VHF converters. Passive component synthesis is addressed in the context of an isolated VHF converter topology. We present a VHF topology where most of the magnetic energy storage is accomplished in a transformer that forms an essential part of the resonant network. The reduced component count aids in manufacturability and size, but places difficult requirements on the transformer design. An algorithm for synthesizing small and efficient air-core transformers with a fully-constrained inductance matrix is presented. Planar PCB transformers are fabricated and match the the design specifications to within 15%. They are 94% efficient and have a power density greater than 2kW per cubic inch. To take full advantage of good devices and printed passives, we develop an IC for the isolated converter having optimized power devices, and integrated gate driver, controller, and hotel functions. The chip is assembled into a complete converter system using the transformers and circuits described above. Flip-chip mounting is used to overcome bondwire parasitics, and reduce packaging volume. The final system achieves 75% efficiency at 75 MHz at 6W.

Design of Low-voltage, High-bandwidth Radio Frequency Power Converters

Design of Low-voltage, High-bandwidth Radio Frequency Power Converters PDF Author: Jingying Hu (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 166

Book Description
The mass and volume required for power electronics circuitry is a dominant obstacle to the miniaturization and integration of many systems. Likewise, power electronics with greater bandwidth and efficiency are becoming vital in many applications. To realize smaller and highly responsive power electronics at low voltages, this thesis explores devices, circuits, and passives capable of operating efficiently at very high frequencies (VHF, 30-300 MHz). Operation at these frequencies enables reduction of the numerical values and physical size of the passive components that dominate power converters, and enables increased bandwidth and transient performance which is valuable in a multitude of low-voltage and low-power applications. This thesis explores the scaling of magnetic component size with frequency, and it is shown that substantial miniaturization is possible with increased frequencies even considering material and heat transfer limitations. Moreover, the impact of frequency scaling of power converters on magnetic components is investigated for different design criteria. Quantitative examples of magnetics scaling are provided that clearly demonstrate the benefits and opportunities in VHF magnetics design. It is shown to utilize the advantages of frequency scaling on passive component size that system losses and other limitations must be considered. One such area that is examined is semiconductor device requirements, where through a combination of device layout optimization for cascode structures and integrated gate drive designs on a 0.35-um CMOS process, converter performance (i.e., loss and bandwidth) can be significantly improved in the VHF regime. In this thesis a dc-dc converter topology is developed that is suitable for low-voltage power conversion and employs synchronous rectification to improve efficiency. The converter is also comprised of a high-bandwidth and high-switching-frequency inverter topology that can dynamically adjust the output power from one-quarter to full power, while maintaining good efficiency. Furthermore, with its inherent capability of gate-width switching, the inverter can further reduce gating loss by one-half resulting in substantial performance improvements at light load operation. A major contribution of this thesis is the development of a synchronous rectifier operating in the VHF regime. VHF power conversion is especially challenging at low voltages due to poor efficiency resulting from rectification loss. To overcome diode rectification loss, the benefits of synchronous rectification are discussed in the context of a 100MHz class-E resonant rectifier, which results in a 2.5 x overall converter efficiency improvement. The culmination of the developed design techniques in passives, semiconductor devices, and circuit topologies is an experimental prototype of a miniaturized 100MHz, 1W power converter utilizing synchronous rectification.

Multi-MHz High Frequency Resonant DC-DC Power Converter

Multi-MHz High Frequency Resonant DC-DC Power Converter PDF Author: Dianguo Xu
Publisher: Springer Nature
ISBN: 9811574243
Category : Technology & Engineering
Languages : en
Pages : 129

Book Description
This book analyzes multi-MHz high frequency resonant DC-DC power converters with operating frequencies ranging from several MHz to tens of MHz in detail, aiming to support researchers and engineers with a focus on multi-MHz high frequency converters. The inverter stage, rectifier stage, matching network stage are analyzed in detail. Based on the three basic stages, typical non-isolated and isolated resonant DC-DC converters are depicted. To reduce the high driving loss under multi-MHz, resonant driving methods are introduced and improved. Also, the design and selection methods of passive and active component under multi-MHz frequency are described, especially for aircore inductor and transformer. Furthermore, multi-MHz resonant converter provides an approach for achieving flexible system.

Pulse-Width Modulated DC-DC Power Converters

Pulse-Width Modulated DC-DC Power Converters PDF Author: Marian K. Kazimierczuk
Publisher: John Wiley & Sons
ISBN: 1119009545
Category : Technology & Engineering
Languages : en
Pages : 960

Book Description
PWM DC-DC power converter technology underpins many energy conversion systems including renewable energy circuits, active power factor correctors, battery chargers, portable devices and LED drivers. Following the success of Pulse-Width Modulated DC-DC Power Converters this second edition has been thoroughly revised and expanded to cover the latest challenges and advances in the field. Key features of 2nd edition: Four new chapters, detailing the latest advances in power conversion, focus on: small-signal model and dynamic characteristics of the buck converter in continuous conduction mode; voltage-mode control of buck converter; small-signal model and characteristics of the boost converter in the discontinuous conduction mode and electromagnetic compatibility EMC. Provides readers with a solid understanding of the principles of operation, synthesis, analysis and design of PWM power converters and semiconductor power devices, including wide band-gap power devices (SiC and GaN). Fully revised Solutions for all end-of-chapter problems available to instructors via the book companion website. Step-by-step derivation of closed-form design equations with illustrations. Fully revised figures based on real data. With improved end-of-chapter summaries of key concepts, review questions, problems and answers, biographies and case studies, this is an essential textbook for graduate and senior undergraduate students in electrical engineering. Its superior readability and clarity of explanations also makes it a key reference for practicing engineers and research scientists.

Design and Implementation of Fully-Integrated Inductive DC-DC Converters in Standard CMOS

Design and Implementation of Fully-Integrated Inductive DC-DC Converters in Standard CMOS PDF Author: Mike Wens
Publisher: Springer Science & Business Media
ISBN: 940071436X
Category : Technology & Engineering
Languages : en
Pages : 316

Book Description
CMOS DC-DC Converters aims to provide a comprehensive dissertation on the matter of monolithic inductive Direct-Current to Direct-Current (DC-DC) converters. For this purpose seven chapters are defined which will allow the designer to gain specific knowledge on the design and implementation of monolithic inductive DC-DC converters, starting from the very basics.

Design and Characterization of a Radio-frequency Dc/dc Power Converter

Design and Characterization of a Radio-frequency Dc/dc Power Converter PDF Author: David Alexander Jackson
Publisher:
ISBN:
Category :
Languages : en
Pages : 171

Book Description
The use of radio-frequency (RF) amplifier topologies in dc/dc power converters allows the operating frequency to be increased by more than two orders of magnitude over the frequency of conventional converters. This enables a reduction in energy storage capacity by several orders of magnitude, and completely eliminates the need for ferromagnetic material in the converter. As a result, power converter size, weight and cost can all potentially be reduced. Moreover, converter output power and efficiency remain high because of the soft-switching capabilities of RF amplifiers. This document describes the design, implementation and measurement of a dc/dc power converter cell operating at 100MHz, with approximately 10 to 30W of output power at around 75% efficiency. The cell is designed for an input voltage range of 11 to 16V, and a user-determined output voltage on the same order of magnitude. The design of this cell also allows an unlimited number of identical cells to be used in parallel to achieve higher output power. This type of converter has applications in a broad range of industries, including automotive, telecommunications, and computing.

Miniaturized, Low-voltage Power Converters with Fast Dynamic Response

Miniaturized, Low-voltage Power Converters with Fast Dynamic Response PDF Author: David Michael Giuliano
Publisher:
ISBN:
Category :
Languages : en
Pages : 224

Book Description
This thesis introduces a two-stage architecture that combines the strengths of switched capacitor (SC) techniques (small size, light-load performance) with the high efficiency and regulation capability of switch-mode power converters. The resulting designs have a superior efficient-power density trade-off over traditional designs. These power converters can provide numerous lowvoltage outputs over a wide input voltage range with a very fast dynamic response, which are ideal for powering logic devices in the mobile and high-performance computing markets. Both design and fabrication considerations for power converters using this architecture are addressed. The results are demonstrated in a 2.4 W dc-dc converter implemented in a 180 nm CMOS IC process and co-packaged with its passive components for high-performance. The converter operates from an input voltage of 2.7 V to 5.5 V with an output voltage of /= 1.2 V, and achieves a 2210 W/inch3 power density with /= 80% efficiency.

Laboratory Manual for Pulse-Width Modulated DC-DC Power Converters

Laboratory Manual for Pulse-Width Modulated DC-DC Power Converters PDF Author: Marian K. Kazimierczuk
Publisher: John Wiley & Sons
ISBN: 1119053757
Category : Technology & Engineering
Languages : en
Pages : 278

Book Description
Designed to complement a range of power electronics study resources, this unique lab manual helps students to gain a deep understanding of the operation, modeling, analysis, design, and performance of pulse-width modulated (PWM) DC-DC power converters. Exercises focus on three essential areas of power electronics: open-loop power stages; small-signal modeling, design of feedback loops and PWM DC-DC converter control schemes; and semiconductor devices such as silicon, silicon carbide and gallium nitride. Meeting the standards required by industrial employers, the lab manual combines programming language with a simulation tool designed for proficiency in the theoretical and practical concepts. Students and instructors can choose from an extensive list of topics involving simulations on MATLAB, SABER, or SPICE-based platforms, enabling readers to gain the most out of the prelab, inlab, and postlab activities. The laboratory exercises have been taught and continuously improved for over 25 years by Marian K. Kazimierczuk thanks to constructive student feedback and valuable suggestions on possible workroom improvements. This up-to-date and informative teaching material is now available for the benefit of a wide audience. Key features: Includes complete designs to give students a quick overview of the converters, their characteristics, and fundamental analysis of operation. Compatible with any programming tool (MATLAB, Mathematica, or Maple) and any circuit simulation tool (PSpice, LTSpice, Synopsys SABER, PLECS, etc.). Quick design section enables students and instructors to verify their design methodology for instant simulations. Presents lab exercises based on the most recent advancements in power electronics, including multiple-output power converters, modeling, current- and voltage-mode control schemes, and power semiconductor devices. Provides comprehensive appendices to aid basic understanding of the fundamental circuits, programming and simulation tools. Contains a quick component selection list of power MOSFETs and diodes together with their ratings, important specifications and Spice models.

Miniatured, High-frequency DC-DC Power Conversion for Embedded Applications

Miniatured, High-frequency DC-DC Power Conversion for Embedded Applications PDF Author: Sakshi Arora
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In order to achieve high power density in battery-powered systems, as well as accommodate the reduced breakdown voltages in scaled CMOS technologies, systems-on-a-chip (SoCs) typically employ one or more supply voltages generated using dc-dc converters. Dc-dc converters are commonly implemented as inductive switching converters because of their high efficiency. However, inductive converters typically have a large footprint that is dominated by the size of bulky off-chip inductors and capacitors. In order to reduce the size of an inductive converter, its switching frequency can be increased by orders of magnitude above the existing practice. However, the use of a high switching frequency leads to increased switching power losses that in turn decrease the power conversion efficiency. To address this challenge, techniques for designing a high-efficiency buck converter while using miniaturized external components are investigated in this research. Design techniques, such as using a high switching frequency that is tunable with the load current and the segmentation and cascoding of power transistors are employed to achieve high power efficiency across a wide range of load currents. While in SoC applications multiple voltages are typically derived from battery by connecting converters in parallel, this work introduces a cascaded, dual-output buck converter topology. Cascading buck converters reduces the input supply voltage of the second converter, thus reducing the switching and ripple-conduction losses that severely affect the efficiency of buck converters using small inductors and operating at high switching frequencies. The use of high-frequency, cascaded conversion presents two significant challenges to the design of the controller for a buck converter. First is the need for adjustability of the switching frequency with varying load currents, and second is the possibility of cross regulation between the outputs of the converter. A digital constant-off-time controller is proposed to address these challenges. The controller enables tuning of the converter's switching frequency. The controller has a fast transient response and good line regulation that help to suppress cross regulation between the two outputs of the buck converter. To demonstrate the proposed multiple-output, cascaded, high-frequency converter, an experimental prototype has been integrated in a 90-nm CMOS technology. This prototype provides two output voltages using a cascade of two buck converters, each employing a small output capacitor on the order of 100 picofarads and a small inductor on the order of nanohenries, thereby reducing the overall size of the converter compared to conventional alternatives.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 556

Book Description