Wide Bandgap Based Devices PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Wide Bandgap Based Devices PDF full book. Access full book title Wide Bandgap Based Devices by Farid Medjdoub. Download full books in PDF and EPUB format.

Wide Bandgap Based Devices

Wide Bandgap Based Devices PDF Author: Farid Medjdoub
Publisher: MDPI
ISBN: 3036505660
Category : Technology & Engineering
Languages : en
Pages : 242

Book Description
Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits. In particular, the following topics are addressed: – GaN- and SiC-based devices for power and optoelectronic applications – Ga2O3 substrate development, and Ga2O3 thin film growth, doping, and devices – AlN-based emerging material and devices – BN epitaxial growth, characterization, and devices

Wide Bandgap Based Devices

Wide Bandgap Based Devices PDF Author: Farid Medjdoub
Publisher: MDPI
ISBN: 3036505660
Category : Technology & Engineering
Languages : en
Pages : 242

Book Description
Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits. In particular, the following topics are addressed: – GaN- and SiC-based devices for power and optoelectronic applications – Ga2O3 substrate development, and Ga2O3 thin film growth, doping, and devices – AlN-based emerging material and devices – BN epitaxial growth, characterization, and devices

Large-signal Modeling of GaN HEMTs for Linear Power Amplifier Design

Large-signal Modeling of GaN HEMTs for Linear Power Amplifier Design PDF Author: Endalkachew Shewarega Mengistu
Publisher: kassel university press GmbH
ISBN: 3899583817
Category :
Languages : en
Pages : 153

Book Description


Handbook of RF and Microwave Power Amplifiers

Handbook of RF and Microwave Power Amplifiers PDF Author: John L. B. Walker
Publisher: Cambridge University Press
ISBN: 0521760100
Category : Technology & Engineering
Languages : en
Pages : 705

Book Description
This is a one-stop guide for circuit designers and system/device engineers, covering everything from CAD to reliability.

Introduction to RF Power Amplifier Design and Simulation

Introduction to RF Power Amplifier Design and Simulation PDF Author: Abdullah Eroglu
Publisher: CRC Press
ISBN: 1351831186
Category : Technology & Engineering
Languages : en
Pages : 368

Book Description
Introduction to RF Power Amplifier Design and Simulation fills a gap in the existing literature by providing step-by-step guidance for the design of radio frequency (RF) power amplifiers, from analytical formulation to simulation, implementation, and measurement. Featuring numerous illustrations and examples of real-world engineering applications, this book: Gives an overview of intermodulation and elaborates on the difference between linear and nonlinear amplifiers Describes the high-frequency model and transient characteristics of metal–oxide–semiconductor field-effect transistors Details active device modeling techniques for transistors and parasitic extraction methods for active devices Explores network and scattering parameters, resonators, matching networks, and tools such as the Smith chart Covers power-sensing devices including four-port directional couplers and new types of reflectometers Presents RF filter designs for power amplifiers as well as application examples of special filter types Demonstrates the use of computer-aided design (CAD) tools, implementing systematic design techniques Blending theory with practice, Introduction to RF Power Amplifier Design and Simulation supplies engineers, researchers, and RF/microwave engineering students with a valuable resource for the creation of efficient, better-performing, low-profile, high-power RF amplifiers.

Efficiency Enhancement of Linear GaN RF power Amplifiers Using the Doherty Technique

Efficiency Enhancement of Linear GaN RF power Amplifiers Using the Doherty Technique PDF Author:
Publisher: kassel university press GmbH
ISBN: 3899586239
Category :
Languages : en
Pages : 196

Book Description


Radio Frequency Circuit Design

Radio Frequency Circuit Design PDF Author: W. Alan Davis
Publisher: John Wiley & Sons
ISBN: 1118099478
Category : Technology & Engineering
Languages : en
Pages : 302

Book Description
This book focuses on components such as filters, transformers, amplifiers, mixers, and oscillators. Even the phase lock loop chapter (the last in the book) is oriented toward practical circuit design, in contrast to the more systems orientation of most communication texts.

Wide Bandgap Semiconductor Electronics And Devices

Wide Bandgap Semiconductor Electronics And Devices PDF Author: Uttam Singisetti
Publisher: World Scientific
ISBN: 9811216495
Category : Technology & Engineering
Languages : en
Pages : 258

Book Description
'This book is more suited for researchers already familiar with WBS who are interested in developing new WBG materials and devices since it provides the latest developments in new materials and processes and trends for WBS and UWBS technology.'IEEE Electrical Insulation MagazineWith the dawn of Gallium Oxide (Ga2O₃) and Aluminum Gallium Nitride (AlGaN) electronics and the commercialization of Gallium Nitride (GaN) and Silicon Carbide (SiC) based devices, the field of wide bandgap materials and electronics has never been more vibrant and exciting than it is now. Wide bandgap semiconductors have had a strong presence in the research and development arena for many years. Recently, the increasing demand for high efficiency power electronics and high speed communication electronics, together with the maturity of the synthesis and fabrication of wide bandgap semicon-ductors, has catapulted wide bandgap electronics and optoelectronics into the mainstream.Wide bandgap semiconductors exhibit excellent material properties, which can potentially enable power device operation at higher efficiency, higher temperatures, voltages, and higher switching speeds than current Si technology. This edited volume will serve as a useful reference for researchers in this field — newcomers and experienced alike.This book discusses a broad range of topics including fundamental transport studies, growth of high-quality films, advanced materials characterization, device modeling, high frequency, high voltage electronic devices and optical devices written by the experts in their respective fields. They also span the whole spectrum of wide bandgap materials including AlGaN, Ga2O₃and diamond.

Partitioning Design Approach for the Reliable Design of Highly Efficient RF Power Amplifiers

Partitioning Design Approach for the Reliable Design of Highly Efficient RF Power Amplifiers PDF Author: Roshanak Lehna
Publisher: kassel university press GmbH
ISBN: 373760388X
Category :
Languages : en
Pages : 190

Book Description
The modern wireless communication systems require modulated signals with wide modulation bandwidth. This, in turns, requires signals with very high dynamic range and peak-to-average power ratio (PAPR). This means that the amplifier in the base-station has to work at a power back-off as large as the dynamic range of the signal, so that the amplifier has a high linearity in this region. For the standard single-stage amplifiers, this large power back-off reduces the efficiency dramatically. In this work, a three-way Doherty power amplifier (DPA) aiming at high power efficiency within a dynamic range of 9.5 dB, is designed and fabricated using partitioning design approach. The partitioning design approach decomposes a complex design task into small-sized, well-controllable, and verifiable subcircuits. This advanced straight forward method has shown very promising results. Using this design approach, a three-way DPA has been designed to demonstrate the advantages of this reliable design technique as well. Based on the design of a single-stage power amplifier and proposing a novel output power combiner, a 6 W three-way DPA has been designed which allows the mandatory load modulation principle in three-way DPA structures to be realized with simpler elements, whereas the design of a standard Doherty combiner would have been very challenging and not practical due to the extremely small value of its characteristic line impedance. The proposed combiner is calculated for a three-way DPA with 2-mm AlGaN/GaN-HEMTs. The simulation result shows a very good load modulation for the amplifier, which confirms the theoretical expectation for a three-way DPA. The efficiency of the designed 6 W three-way DPA at large back-off shows very promising values compared to recently reported amplifiers. The measured IMD3 products confirm the good linearity of the amplifier as well. Accordingly, the proposed power combiner and the design strategy are recommended to be used as the preferred option for designing three-way DPA structures with very high output power.

Wide Bandgap Semiconductor Based Micro/Nano Devices

Wide Bandgap Semiconductor Based Micro/Nano Devices PDF Author: Jung-Hun Seo
Publisher: MDPI
ISBN: 3038978426
Category : Technology & Engineering
Languages : en
Pages : 138

Book Description
While group IV or III-V based device technologies have reached their technical limitations (e.g., limited detection wavelength range or low power handling capability), wide bandgap (WBG) semiconductors which have band-gaps greater than 3 eV have gained significant attention in recent years as a key semiconductor material in high-performance optoelectronic and electronic devices. These WBG semiconductors have two definitive advantages for optoelectronic and electronic applications due to their large bandgap energy. WBG energy is suitable to absorb or emit ultraviolet (UV) light in optoelectronic devices. It also provides a higher electric breakdown field, which allows electronic devices to possess higher breakdown voltages. This Special Issue seeks research papers, short communications, and review articles that focus on novel synthesis, processing, designs, fabrication, and modeling of various WBG semiconductor power electronics and optoelectronic devices.

Physics of Semiconductor Devices

Physics of Semiconductor Devices PDF Author: V. K. Jain
Publisher: Springer Science & Business Media
ISBN: 3319030027
Category : Science
Languages : en
Pages : 841

Book Description
The purpose of this workshop is to spread the vast amount of information available on semiconductor physics to every possible field throughout the scientific community. As a result, the latest findings, research and discoveries can be quickly disseminated. This workshop provides all participating research groups with an excellent platform for interaction and collaboration with other members of their respective scientific community. This workshop’s technical sessions include various current and significant topics for applications and scientific developments, including • Optoelectronics • VLSI & ULSI Technology • Photovoltaics • MEMS & Sensors • Device Modeling and Simulation • High Frequency/ Power Devices • Nanotechnology and Emerging Areas • Organic Electronics • Displays and Lighting Many eminent scientists from various national and international organizations are actively participating with their latest research works and also equally supporting this mega event by joining the various organizing committees.