Design of Low-density Parity-check Codes for Magnetic Recording Channels PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Design of Low-density Parity-check Codes for Magnetic Recording Channels PDF full book. Access full book title Design of Low-density Parity-check Codes for Magnetic Recording Channels by Richard Michael Todd. Download full books in PDF and EPUB format.

Design of Low-density Parity-check Codes for Magnetic Recording Channels

Design of Low-density Parity-check Codes for Magnetic Recording Channels PDF Author: Richard Michael Todd
Publisher:
ISBN: 9780493903606
Category : Coding theory
Languages : en
Pages : 190

Book Description


Design of Low-density Parity-check Codes for Magnetic Recording Channels

Design of Low-density Parity-check Codes for Magnetic Recording Channels PDF Author: Richard Michael Todd
Publisher:
ISBN: 9780493903606
Category : Coding theory
Languages : en
Pages : 190

Book Description


Channel Capacity and Coding for Magnetic Recording Channels with Media Noise

Channel Capacity and Coding for Magnetic Recording Channels with Media Noise PDF Author: Travis Roger Oenning
Publisher:
ISBN:
Category :
Languages : en
Pages : 290

Book Description


Coding and Iterative Detection for Magnetic Recording Channels

Coding and Iterative Detection for Magnetic Recording Channels PDF Author: Zining Wu
Publisher: Springer Science & Business Media
ISBN: 146154565X
Category : Technology & Engineering
Languages : en
Pages : 165

Book Description
The advent of the internet age has produced enormous demand for in creased storage capacity and for the consequent increases in the amount of information that can be stored in a small space. While physical and media improvements have driven the majority of improvement in modern storage systems, signal processing and coding methods have increasing ly been used to augment those improvements. Run-length-limited codes and partial-response detection methods have come to be the norm in an industry that once rejected any sophistication in the read or write pro cessing circuits. VLSI advances now enable increasingly sophisticated signal processing methods for negligible cost and complexity, a trend sure to continue even as disk access speeds progress to billions of bits per second and terabits per square inch in the new millennium of the in formation age. This new book representing the Ph. D. dissertation work of Stanford's recent graduate Dr. Zining Wu is an up-to-date and fo cused review of the area that should be of value to those just starting in this area and as well those with considerable expertise. The use of saturation recording, i. e. the mandated restriction of two-level inputs, creates interesting twists on the use of communica tion/transmission methods in recording.

Low-density Parity-check Codes with Erasures and Puncturing

Low-density Parity-check Codes with Erasures and Puncturing PDF Author: Jeongseok Ha Ha
Publisher:
ISBN:
Category : Coding theory
Languages : en
Pages :

Book Description
In this thesis, we extend applications of Low-Density Parity-Check (LDPC) codes to a combination of constituent sub-channels, which is a mixture of Gaussian channels with erasures. This model, for example, represents a common channel in magnetic recordings where thermal asperities in the system are detected and represented at the decoder as erasures. Although this channel is practically useful, we cannot find any previous work that evaluates performance of LDPC codes over this channel. We are also interested in practical issues such as designing robust LDPC codes for the mixture channel and predicting performance variations due to erasure patterns (random and burst), and finite block lengths. On time varying channels, a common error control strategy is to adapt the coding rate according to available channel state information (CSI). An effective way to realize this coding strategy is to use a single code and puncture it in a rate-compatible fashion, a so-called rate-compatible punctured code (RCPC). We are interested in the existence of good puncturing patterns for rate-changes that minimize performance loss. We show the existence of good puncturing patterns with analysis and verify the results with simulations. Universality of a channel code across a broad range of coding rates is a theoretically interesting topic. We are interested in the possibility of using the puncturing technique proposed in this thesis for designing universal LDPC codes. We also consider how to design high rate LDPC codes by puncturing low rate LDPC codes. The new design method can take advantage of longer effect block lengths, sparser parity-check matrices, and larger minimum distances of low rate LDPC codes.

LDPC Coding for Magnetic Storage: Low Floor Decoding Algorithms, System Design and Performance Analysis

LDPC Coding for Magnetic Storage: Low Floor Decoding Algorithms, System Design and Performance Analysis PDF Author: Yang Han
Publisher:
ISBN:
Category :
Languages : en
Pages : 300

Book Description
Low-density parity check (LDPC) codes have experienced tremendous popularity due to their capacity-achieving performance. In this dissertation, several different aspects of LDPC coding and its applications to magnetic storage are investigated. One of the most significant issues that impedes the use of LDPC codes in many systems is the error-rate floor phenomenon associated with their iterative decoders. By delineating the fundamental principles, we extend to partial response channels algorithms for predicting the error rate performance in the floor region for the binary-input AWGN channel. We develop three classes of decoding algorithms for mitigating the error floor by directly tackling the cause of the problem: trapping sets. In our experiments, these algorithms provide multiple orders of improvement over conventional decoders at the cost of various implementation complexity increases. Product codes are widely used in magnetic recording systems where errors are both isolated and bursty. A dual-mode decoding technique for Reed-Solomon-code-based product codes is proposed, where the second decoding mode involves maximum-likelihood erasure decoding of the binary images of the Reed-Solomon codewords. By exploring a tape storage application, we demonstrate that this dual-mode decoding system dramatically improves the performance of product codes. Moreover, the complexity added by the second decoding mode is manageable. We also show the performance of this technique on a product code which has an LDPC code in thecolumns. Run-length-limited (RLL) codes are ubiquitous in today's disk drives. Using RLL codes has enabled drive designers to pack data very efficiently onto the platter surface by ensuring stable symbol-timing recovery. We consider a concatenation system design with an LDPC code and an RLL code as components to simultaneously achieve desirable features such as: soft information availability to the LDPC decoder, the preservation of the LDPC code's structure, and the capability of correcting long erasure bursts. We analyze the performance of LDPC-coded magnetic recording channel in the presence of media noise. We employ advanced signal processing for the pattern-dependent-noise-predictive channel detectors, and demonstrate that a gain of over 1 dB or a linear density gain of about 8% relative to a comparable Reed-Solomon is attainable by using an LDPC code.

Coding and Signal Processing for Magnetic Recording Systems

Coding and Signal Processing for Magnetic Recording Systems PDF Author: Bane Vasic
Publisher: CRC Press
ISBN: 0203490312
Category : Computers
Languages : en
Pages : 742

Book Description
Implementing new architectures and designs for the magnetic recording read channel have been pushed to the limits of modern integrated circuit manufacturing technology. This book reviews advanced coding and signal processing techniques and architectures for magnetic recording systems. Beginning with the basic principles, it examines read/write operations, data organization, head positioning, sensing, timing recovery, data detection, and error correction. It also provides an in-depth treatment of all recording channel subsystems inside a read channel and hard disk drive controller. The final section reviews new trends in coding, particularly emerging codes for recording channels.

Constrained Coding and Soft Iterative Decoding

Constrained Coding and Soft Iterative Decoding PDF Author: John L. Fan
Publisher: Springer Science & Business Media
ISBN: 1461515254
Category : Technology & Engineering
Languages : en
Pages : 268

Book Description
Constrained Coding and Soft Iterative Decoding is the first work to combine the issues of constrained coding and soft iterative decoding (e.g., turbo and LDPC codes) from a unified point of view. Since constrained coding is widely used in magnetic and optical storage, it is necessary to use some special techniques (modified concatenation scheme or bit insertion) in order to apply soft iterative decoding. Recent breakthroughs in the design and decoding of error-control codes (ECCs) show significant potential for improving the performance of many communications systems. ECCs such as turbo codes and low-density parity check (LDPC) codes can be represented by graphs and decoded by passing probabilistic (a.k.a. `soft') messages along the edges of the graph. This message-passing algorithm yields powerful decoders whose performance can approach the theoretical limits on capacity. This exposition uses `normal graphs,' introduced by Forney, which extend in a natural manner to block diagram representations of the system and provide a simple unified framework for the decoding of ECCs, constrained codes, and channels with memory. Soft iterative decoding is illustrated by the application of turbo codes and LDPC codes to magnetic recording channels. For magnetic and optical storage, an issue arises in the use of constrained coding, which places restrictions on the sequences that can be transmitted through the channel; the use of constrained coding in combination with soft ECC decoders is addressed by the modified concatenation scheme also known as `reverse concatenation.' Moreover, a soft constraint decoder yields additional coding gain from the redundancy in the constraint, which may be of practical interest in the case of optical storage. In addition, this monograph presents several other research results (including the design of sliding-block lossless compression codes, and the decoding of array codes as LDPC codes). Constrained Coding and Soft Iterative Decoding will prove useful to students, researchers and professional engineers who are interested in understanding this new soft iterative decoding paradigm and applying it in communications and storage systems.

Low-density Parity-check Coding for High-density Magnetic Recording Systems

Low-density Parity-check Coding for High-density Magnetic Recording Systems PDF Author: Weijun Tan
Publisher:
ISBN:
Category : Error-correcting codes (Information theory)
Languages : en
Pages : 330

Book Description


Low Density Parity Check Code Designs For Distributed Joint Source-Channel Coding Over Multiple Access Channels

Low Density Parity Check Code Designs For Distributed Joint Source-Channel Coding Over Multiple Access Channels PDF Author: Iqbal Shahid
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Source Coding -- Joint Source and Channel Coding -- LDPC Code Design -- Multi-user Communication.

Advanced Error Control Techniques for Data Storage Systems

Advanced Error Control Techniques for Data Storage Systems PDF Author: Erozan M. Kurtas
Publisher: CRC Press
ISBN: 1420036491
Category : Computers
Languages : en
Pages : 288

Book Description
With the massive amount of data produced and stored each year, reliable storage and retrieval of information is more crucial than ever. Robust coding and decoding techniques are critical for correcting errors and maintaining data integrity. Comprising chapters thoughtfully selected from the highly popular Coding and Signal Processing for Magnetic Recording Systems, Advanced Error Control Techniques for Data Storage Systems is a finely focused reference to the state-of-the-art error control and modulation techniques used in storage devices. The book begins with an introduction to error control codes, explaining the theory and basic concepts underlying the codes. Building on these concepts, the discussion turns to modulation codes, paying special attention to run-length limited sequences, followed by maximum transition run (MTR) and spectrum shaping codes. It examines the relationship between constrained codes and error control and correction systems from both code-design and architectural perspectives as well as techniques based on convolution codes. With a focus on increasing data density, the book also explores multi-track systems, soft decision decoding, and iteratively decodable codes such as Low-Density Parity-Check (LDPC) Codes, Turbo codes, and Turbo Product Codes. Advanced Error Control Techniques for Data Storage Systems offers a comprehensive collection of theory and techniques that is ideal for specialists working in the field of data storage systems.