Design of Hybrid Conjugated Polymer Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Design of Hybrid Conjugated Polymer Materials PDF full book. Access full book title Design of Hybrid Conjugated Polymer Materials by Joseph J. Peterson. Download full books in PDF and EPUB format.

Design of Hybrid Conjugated Polymer Materials

Design of Hybrid Conjugated Polymer Materials PDF Author: Joseph J. Peterson
Publisher:
ISBN:
Category : Conjugated polymers
Languages : en
Pages : 205

Book Description
The research presented in this dissertation focuses on the design and synthesis of novel hybrid conjugated polymer materials using two different approaches: 1) inorganic/organic hybrid semiconductors through the incorporation of carboranes into the polymer structure and 2) the modification of surfaces with conjugated polymers via grafting approaches. Hybrid conjugated polymeric materials, which are materials or systems in which conjugated polymers are chemically integrated with non-traditional structures or surfaces, have the potential to harness useful properties from both components of the material to help overcome hurdles in their practical realization in polymer-based devices. This work is centered around the synthetic challenges of creating new hybrid conjugated systems and their potential for advancing the field of polymer-based electronics through both greater understanding of the behavior of hybrid systems, and access to improved performance and new applications. Chapter 1 highlights the potential applications and advantages for these hybrid systems, and provides some historical perspective, along with relevant background materials, to illustrate the rationale behind this work. Chapter 2 explores the synthesis of poly(fluorene)s with pendant carborane cages. The Ni(0) dehalogenative polymerization of a dibromofluorene with pendant carborane cages tethered to the bridging 9-position produced hybrid polymers produced polymers which combined the useful emissive characteristics of poly(fluorene) with the thermal and chemical stability of carborane cages. The materials were found to display increased glass transition temperatures and showed improved emission color stability after annealing at high temperatures relative to the non-hybrid polymer. The design and synthesis of a poly(fluorene)-based hybrid material with carborane cages in the backbone, rather than as pendant groups, begins in chapter 3. Poly(fluorene) with p-carborane in the backbone is synthesized and characterized, and the material is found to be a high MW, soluble blue emitter which shows a higher glass transition temperature and greater stability than a non-hybrid polymer. UV absorbance and fluorescence spectroscopy indicated some electronic interaction between the conjugated polymer and the cages, but they did not appear to be fully conjugated in the traditional sense. Chapter 4 describes the design, synthesis, and characterization of poly(fluorene) with o-carborane in the backbone. Profound changes in the behavior of the polymer, from its polymerization behavior to its emission characteristics, were observed and their origins are discussed. Experiments to explore the nature of the cage/polymer interactions were performed and possible applications which take advantage of the unique nature of the o-carborane hybrid polymer are explored and discussed. Hybrid conjugated polymer materials via grafting approaches to surfaces and surface modification are discussed starting in chapter 5. The synthesis of a dibromofluorene-based silane coupling agent for the surface functionalization of oxide surfaces is presented, and the surface directed Ni(0) dehalogenative polymerization of poly(dihexylfluorene) is explored Chapter 6 focuses on the exploration of conjugated polymer/cellulose hybrid materials. Surface medication of cellulose materials with monomer-like anchor points is discussed. Grafting of the modified cellulose with conjugated polymers was explored and the grafting of three different repeat structures based on fluorene-, fluorenevinylene-, and fluoreneethynylene motifs were optimized to provide a general route to cellulose/conjugated polymer hybrid materials. Characterization and possible applications of such hybrid materials are discussed. Finally, chapter 7 is devoted to the simultaneous surface patterning and functionalization of poly(2-hydroxyethylmethacrylate) thin films using a silane infusion-based wrinkling technique. While not a conjugated polymer system, the spontaneous patterning and functionalization methods explored in this chapter produce hybrid organic/inorganic polymer thin films which have applications that range from optics, to adhesion, to polymer-based electronics, and the research compliments the other chapters. The spontaneous generation of complex patterns, of a small scale approaching 100nm feature size, over a large area with simultaneous control over surface chemistry is explored. Examples of complex, hierarchically patterned films which integrate lithographic processes such as nanoimprint lithography and electron beam lithography with spontaneous patterning via wrinkling are presented.

Design of Hybrid Conjugated Polymer Materials

Design of Hybrid Conjugated Polymer Materials PDF Author: Joseph J. Peterson
Publisher:
ISBN:
Category : Conjugated polymers
Languages : en
Pages : 205

Book Description
The research presented in this dissertation focuses on the design and synthesis of novel hybrid conjugated polymer materials using two different approaches: 1) inorganic/organic hybrid semiconductors through the incorporation of carboranes into the polymer structure and 2) the modification of surfaces with conjugated polymers via grafting approaches. Hybrid conjugated polymeric materials, which are materials or systems in which conjugated polymers are chemically integrated with non-traditional structures or surfaces, have the potential to harness useful properties from both components of the material to help overcome hurdles in their practical realization in polymer-based devices. This work is centered around the synthetic challenges of creating new hybrid conjugated systems and their potential for advancing the field of polymer-based electronics through both greater understanding of the behavior of hybrid systems, and access to improved performance and new applications. Chapter 1 highlights the potential applications and advantages for these hybrid systems, and provides some historical perspective, along with relevant background materials, to illustrate the rationale behind this work. Chapter 2 explores the synthesis of poly(fluorene)s with pendant carborane cages. The Ni(0) dehalogenative polymerization of a dibromofluorene with pendant carborane cages tethered to the bridging 9-position produced hybrid polymers produced polymers which combined the useful emissive characteristics of poly(fluorene) with the thermal and chemical stability of carborane cages. The materials were found to display increased glass transition temperatures and showed improved emission color stability after annealing at high temperatures relative to the non-hybrid polymer. The design and synthesis of a poly(fluorene)-based hybrid material with carborane cages in the backbone, rather than as pendant groups, begins in chapter 3. Poly(fluorene) with p-carborane in the backbone is synthesized and characterized, and the material is found to be a high MW, soluble blue emitter which shows a higher glass transition temperature and greater stability than a non-hybrid polymer. UV absorbance and fluorescence spectroscopy indicated some electronic interaction between the conjugated polymer and the cages, but they did not appear to be fully conjugated in the traditional sense. Chapter 4 describes the design, synthesis, and characterization of poly(fluorene) with o-carborane in the backbone. Profound changes in the behavior of the polymer, from its polymerization behavior to its emission characteristics, were observed and their origins are discussed. Experiments to explore the nature of the cage/polymer interactions were performed and possible applications which take advantage of the unique nature of the o-carborane hybrid polymer are explored and discussed. Hybrid conjugated polymer materials via grafting approaches to surfaces and surface modification are discussed starting in chapter 5. The synthesis of a dibromofluorene-based silane coupling agent for the surface functionalization of oxide surfaces is presented, and the surface directed Ni(0) dehalogenative polymerization of poly(dihexylfluorene) is explored Chapter 6 focuses on the exploration of conjugated polymer/cellulose hybrid materials. Surface medication of cellulose materials with monomer-like anchor points is discussed. Grafting of the modified cellulose with conjugated polymers was explored and the grafting of three different repeat structures based on fluorene-, fluorenevinylene-, and fluoreneethynylene motifs were optimized to provide a general route to cellulose/conjugated polymer hybrid materials. Characterization and possible applications of such hybrid materials are discussed. Finally, chapter 7 is devoted to the simultaneous surface patterning and functionalization of poly(2-hydroxyethylmethacrylate) thin films using a silane infusion-based wrinkling technique. While not a conjugated polymer system, the spontaneous patterning and functionalization methods explored in this chapter produce hybrid organic/inorganic polymer thin films which have applications that range from optics, to adhesion, to polymer-based electronics, and the research compliments the other chapters. The spontaneous generation of complex patterns, of a small scale approaching 100nm feature size, over a large area with simultaneous control over surface chemistry is explored. Examples of complex, hierarchically patterned films which integrate lithographic processes such as nanoimprint lithography and electron beam lithography with spontaneous patterning via wrinkling are presented.

Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications

Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications PDF Author: Srabanti Ghosh
Publisher: John Wiley & Sons
ISBN: 3527345574
Category : Technology & Engineering
Languages : en
Pages : 38

Book Description
A timely overview of fundamental and advanced topics of conjugated polymer nanostructures Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications is a comprehensive reference on conjugated polymers for energy applications. Distinguished academic and editor Srabanti Ghosh offers readers a broad overview of the synthesis, characterization, and energy-related applications of nanostructures based on conjugated polymers. The book includes novel approaches and presents an interdisciplinary perspective rooted in the interfacing of polymer and synthetic chemistry, materials science, organic chemistry, and analytical chemistry. This book provides complete descriptions of conjugated polymer nanostructures and polymer-based hybrid materials for energy conversion, water splitting, and the degradation of organic pollutants. Photovoltaics, solar cells, and energy storage devices such as supercapacitors, lithium ion battery electrodes, and their associated technologies are discussed, as well. Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications covers both the fundamental topics and the most recent advances in this rapidly developing area, including: The design and characterization of conjugated polymer nanostructures, including the template-free and chemical synthesis of polymer nanostructures Conjugated polymer nanostructures for solar energy conversion and environmental protection, including the use of conjugated polymer-based nanocomposites as photocatalysts Conjugated polymer nanostructures for energy storage, including the use of nanocomposites as electrode materials The presentation of different and novel methods of utilizing conjugated polymer nanostructures for energy applications Perfect for materials scientists, polymer chemists, and physical chemists, Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications also belongs on the bookshelves of organic chemists and any other practicing researchers, academics, or professionals whose work touches on these highly versatile and useful structures.

Design and Synthesis of Conjugated Polymers

Design and Synthesis of Conjugated Polymers PDF Author: Mario Leclerc
Publisher: John Wiley & Sons
ISBN: 9783527629794
Category : Technology & Engineering
Languages : en
Pages : 379

Book Description
This first systematic compilation of synthesis methods for different classes of polymers describes well-tested and reproducible procedures, thus saving time, money and chemicals. Each chapter presents the latest method for a specific class of conjugated polymers with a particular emphasis on the design aspects for organo-electronic applications. In this concise and practically oriented manner, readers are introduced to the strategies of influencing and controlling the polymer properties with respect to their use in the desired device. This style of presentation quickly helps researchers in their daily lab work and prevents them from reinventing the wheel over and over again.

Conjugated Polymers for Next-Generation Applications, Volume 1

Conjugated Polymers for Next-Generation Applications, Volume 1 PDF Author: Vijay Kumar
Publisher: Woodhead Publishing
ISBN: 0128236345
Category : Technology & Engineering
Languages : en
Pages : 618

Book Description
Conjugated Polymers for Next-Generation Applications, Volume One: Synthesis, Properties and Optoelectrochemical Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book’s emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering. Provides an overview of the synthesis and functionalization of conjugated polymers and their composites Reviews important photovoltaics applications of conjugated polymeric materials, including their use in energy storage, batteries and optoelectronic devices Discusses conjugated polymers and their application in electronics for sensing, bioelectronics, memory, and more

Conjugated Polymers for Next-Generation Applications, Volume 2

Conjugated Polymers for Next-Generation Applications, Volume 2 PDF Author: Vijay Kumar
Publisher: Woodhead Publishing
ISBN: 0128240954
Category : Technology & Engineering
Languages : en
Pages : 443

Book Description
Conjugated Polymers for Next-Generation Applications, Volume Two: Energy Storage Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book’s emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering. Provides an overview of the synthesis and functionalization of conjugated polymers and their composites Reviews important photovoltaics applications of conjugated polymeric materials, including their use in energy storage, batteries and optoelectronic devices Discusses conjugated polymers and their application in electronics for sensing, bioelectronics, memory, and more

Design, Synthesis, and Application of Novel π-Conjugated Materials

Design, Synthesis, and Application of Novel π-Conjugated Materials PDF Author: Haichang Zhang
Publisher: Frontiers Media SA
ISBN: 2889664813
Category : Science
Languages : en
Pages : 126

Book Description


Designing Conjugated Polymer-based Functional Materials Via the Incorporation of Supramolecular Complexities

Designing Conjugated Polymer-based Functional Materials Via the Incorporation of Supramolecular Complexities PDF Author: Phoebe Hoi-Ying Kwan
Publisher:
ISBN:
Category :
Languages : en
Pages : 422

Book Description
(Cont.) These ions provide critical interconnects and mediate interchain charge hopping. Chapter Five describes another conducting organic-metal hybrid system, wherein two distinct conducting polymers are configured in a cross-linked network held together by a rotaxane architecture. Anion interactions with the redox active metal ions modulate the redox properties of the metal centers, thereby affecting the polymer's conductivity.

Conjugated Polymer Synthesis

Conjugated Polymer Synthesis PDF Author: Yoshiki Chujo
Publisher: John Wiley & Sons
ISBN: 3527632689
Category : Technology & Engineering
Languages : en
Pages : 333

Book Description
Edited and authored by top international experts, this first book on conjugated polymers with a focus on synthesis provides a detailed overview of all modern synthetic methods for these highly interesting compounds. As such, it describes every important compound class, including polysilanes, organoboron compounds, and ferrocene-containing conjugated polymers. An indispensable source for every synthetic polymer chemist.

Conjugated Polymers: Synthesis & Design

Conjugated Polymers: Synthesis & Design PDF Author: Seth C. Rasmussen
Publisher: American Chemical Society
ISBN: 0841299609
Category : Science
Languages : en
Pages : 198

Book Description
This digital primer serves as an excellent introduction to conjugated polymers, particularly in terms of their synthesis and design. Chapters one and two introduce common terminology and fundamental concepts. Chapter three covers known structure–function relationships that can be used to design conjugated polymers with the desired properties for specific applications, concluding with a discussion of the additive and sometimes conflicting aspects of these design elements. Chapters four, five, and six cover the various methods used to synthesize these materials, beginning with the oldest and most simple approaches, and increasing in synthetic complexity. Advanced undergraduates, graduate students, and faculty wishing to enter this field for the first time should find this primer beneficial. At the same time, however, we have pointed out various misconceptions still commonly found in the literature, which should be valuable to those already familiar with these materials.

Conjugated Polymers And Oligomers: Structural And Soft Matter Aspects

Conjugated Polymers And Oligomers: Structural And Soft Matter Aspects PDF Author: Matti Knaapila
Publisher: World Scientific
ISBN: 9813225777
Category : Science
Languages : en
Pages : 204

Book Description
This book identifies modern topics and current trends of structural and soft matter aspects of conjugated polymers and oligomers. Each chapter recognizes an active research line where structural perspective dominates research and therefore the book covers fundamental aspects of persistent conjugated polymer backbone, water soluble conjugated polyelectrolytes and surfactants, conjugated molecules and biomolecules and DNA and the advanced use of synchrotron radiation and electron microscopy to find out structural details in conjugated molecule films and devices as well as under ambient and extreme conditions.