Author: Sing-Ping Chiew
Publisher: CRC Press
ISBN: 1351203940
Category : Technology & Engineering
Languages : en
Pages : 104
Book Description
This book is the companion volume to Design Examples for High Strength Steel Reinforced Concrete Columns – A Eurocode 4 Approach. Guidance is much needed on the design of high strength steel reinforced concrete (SRC) columns beyond the remit of Eurocode 4. Given the much narrower range of permitted concrete and steel material strengths in comparison to EC2 and EC3, and the better ductility and buckling resistance of SRC columns compared to steel or reinforced concrete, there is a clear need for design beyond the guidelines. This book looks at the design of SRC columns using high strength concrete, high strength structural steel and high strength reinforcing steel materials – columns with concrete cylinder strength up to 90 N/mm2, yield strength of structural steel up to 690 N/mm2 and yield strength of reinforcing steel up to 600 N/mm2 respectively. The companion volume provides detailed worked examples on use of these high strength materials. This book is written primarily for structural engineers and designers who are familiar with basic EC4 design, and should also be useful to civil engineering undergraduate and graduate students who are studying composite steel concrete design and construction. Equations for design resistances are presented clearly so that they can be easily programmed into design spreadsheets for ease of use.
Design of High Strength Steel Reinforced Concrete Columns
Author: Sing-Ping Chiew
Publisher: CRC Press
ISBN: 1351203940
Category : Technology & Engineering
Languages : en
Pages : 104
Book Description
This book is the companion volume to Design Examples for High Strength Steel Reinforced Concrete Columns – A Eurocode 4 Approach. Guidance is much needed on the design of high strength steel reinforced concrete (SRC) columns beyond the remit of Eurocode 4. Given the much narrower range of permitted concrete and steel material strengths in comparison to EC2 and EC3, and the better ductility and buckling resistance of SRC columns compared to steel or reinforced concrete, there is a clear need for design beyond the guidelines. This book looks at the design of SRC columns using high strength concrete, high strength structural steel and high strength reinforcing steel materials – columns with concrete cylinder strength up to 90 N/mm2, yield strength of structural steel up to 690 N/mm2 and yield strength of reinforcing steel up to 600 N/mm2 respectively. The companion volume provides detailed worked examples on use of these high strength materials. This book is written primarily for structural engineers and designers who are familiar with basic EC4 design, and should also be useful to civil engineering undergraduate and graduate students who are studying composite steel concrete design and construction. Equations for design resistances are presented clearly so that they can be easily programmed into design spreadsheets for ease of use.
Publisher: CRC Press
ISBN: 1351203940
Category : Technology & Engineering
Languages : en
Pages : 104
Book Description
This book is the companion volume to Design Examples for High Strength Steel Reinforced Concrete Columns – A Eurocode 4 Approach. Guidance is much needed on the design of high strength steel reinforced concrete (SRC) columns beyond the remit of Eurocode 4. Given the much narrower range of permitted concrete and steel material strengths in comparison to EC2 and EC3, and the better ductility and buckling resistance of SRC columns compared to steel or reinforced concrete, there is a clear need for design beyond the guidelines. This book looks at the design of SRC columns using high strength concrete, high strength structural steel and high strength reinforcing steel materials – columns with concrete cylinder strength up to 90 N/mm2, yield strength of structural steel up to 690 N/mm2 and yield strength of reinforcing steel up to 600 N/mm2 respectively. The companion volume provides detailed worked examples on use of these high strength materials. This book is written primarily for structural engineers and designers who are familiar with basic EC4 design, and should also be useful to civil engineering undergraduate and graduate students who are studying composite steel concrete design and construction. Equations for design resistances are presented clearly so that they can be easily programmed into design spreadsheets for ease of use.
Design of High Strength Steel Reinforced Concrete Columns
Author: Sing-Ping Chiew
Publisher: CRC Press
ISBN: 1351203932
Category : Technology & Engineering
Languages : en
Pages : 88
Book Description
This book is the companion volume to Design Examples for High Strength Steel Reinforced Concrete Columns – A Eurocode 4 Approach. Guidance is much needed on the design of high strength steel reinforced concrete (SRC) columns beyond the remit of Eurocode 4. Given the much narrower range of permitted concrete and steel material strengths in comparison to EC2 and EC3, and the better ductility and buckling resistance of SRC columns compared to steel or reinforced concrete, there is a clear need for design beyond the guidelines. This book looks at the design of SRC columns using high strength concrete, high strength structural steel and high strength reinforcing steel materials – columns with concrete cylinder strength up to 90 N/mm2, yield strength of structural steel up to 690 N/mm2 and yield strength of reinforcing steel up to 600 N/mm2 respectively. The companion volume provides detailed worked examples on use of these high strength materials. This book is written primarily for structural engineers and designers who are familiar with basic EC4 design, and should also be useful to civil engineering undergraduate and graduate students who are studying composite steel concrete design and construction. Equations for design resistances are presented clearly so that they can be easily programmed into design spreadsheets for ease of use.
Publisher: CRC Press
ISBN: 1351203932
Category : Technology & Engineering
Languages : en
Pages : 88
Book Description
This book is the companion volume to Design Examples for High Strength Steel Reinforced Concrete Columns – A Eurocode 4 Approach. Guidance is much needed on the design of high strength steel reinforced concrete (SRC) columns beyond the remit of Eurocode 4. Given the much narrower range of permitted concrete and steel material strengths in comparison to EC2 and EC3, and the better ductility and buckling resistance of SRC columns compared to steel or reinforced concrete, there is a clear need for design beyond the guidelines. This book looks at the design of SRC columns using high strength concrete, high strength structural steel and high strength reinforcing steel materials – columns with concrete cylinder strength up to 90 N/mm2, yield strength of structural steel up to 690 N/mm2 and yield strength of reinforcing steel up to 600 N/mm2 respectively. The companion volume provides detailed worked examples on use of these high strength materials. This book is written primarily for structural engineers and designers who are familiar with basic EC4 design, and should also be useful to civil engineering undergraduate and graduate students who are studying composite steel concrete design and construction. Equations for design resistances are presented clearly so that they can be easily programmed into design spreadsheets for ease of use.
Design Examples for High Strength Steel Reinforced Concrete Columns
Author: Sing-Ping Chiew
Publisher: CRC Press
ISBN: 0429890729
Category : Technology & Engineering
Languages : en
Pages : 96
Book Description
This book is the companion volume to Design of High Strength Steel Reinforced Concrete Columns – A Eurocode 4 Approach. This book provides a large number of worked examples for the design of high strength steel reinforced concrete (SRC) columns. It is based on the Eurocode 4 approach, but goes beyond this to give much needed guidance on the narrower range of permitted concrete and steel material strengths in comparison to EC2 and EC3, and the better ductility and buckling resistance of SRC columns compared to steel or reinforced concrete. Special considerations are given to resistance calculations that maximize the full strength of the materials, with concrete cylinder strength up to 90 N/mm2, yield strength of structural steel up to 690 N/mm2 and yield strength of reinforcing steel up to 600 N/mm2 respectively. These examples build on the design principles set out in the companion volume, allowing the readers to practice and understand the EC4 methodology easily. Structural engineers and designers who are familiar with basic EC4 design should find these design examples particularly helpful, whilst engineering undergraduate and graduate students who are studying composite steel concrete design and construction should easily gain further understanding from working through the worked examples which are set out in a step-by-step clearly fashion.
Publisher: CRC Press
ISBN: 0429890729
Category : Technology & Engineering
Languages : en
Pages : 96
Book Description
This book is the companion volume to Design of High Strength Steel Reinforced Concrete Columns – A Eurocode 4 Approach. This book provides a large number of worked examples for the design of high strength steel reinforced concrete (SRC) columns. It is based on the Eurocode 4 approach, but goes beyond this to give much needed guidance on the narrower range of permitted concrete and steel material strengths in comparison to EC2 and EC3, and the better ductility and buckling resistance of SRC columns compared to steel or reinforced concrete. Special considerations are given to resistance calculations that maximize the full strength of the materials, with concrete cylinder strength up to 90 N/mm2, yield strength of structural steel up to 690 N/mm2 and yield strength of reinforcing steel up to 600 N/mm2 respectively. These examples build on the design principles set out in the companion volume, allowing the readers to practice and understand the EC4 methodology easily. Structural engineers and designers who are familiar with basic EC4 design should find these design examples particularly helpful, whilst engineering undergraduate and graduate students who are studying composite steel concrete design and construction should easily gain further understanding from working through the worked examples which are set out in a step-by-step clearly fashion.
Concrete-Filled Stainless Steel Tubular Columns
Author: Vipulkumar Patel
Publisher: CRC Press
ISBN: 1351005693
Category : Technology & Engineering
Languages : en
Pages : 149
Book Description
Concrete-filled stainless steel tubular (CFSST) columns are increasingly used in modern composite construction due to their high strength, high ductility, high corrosion resistance, high durability and aesthetics and ease of maintenance. Thin-walled CFSST columns are characterized by the different strain-hardening behavior of stainless steel in tension and in compression, local buckling of stainless steel tubes and concrete confinement. Design codes and numerical models often overestimate or underestimate the ultimate strengths of CFSST columns. This book presents accurate and efficient computational models for the nonlinear inelastic analysis and design of CFSST short and slender columns under axial load and biaxial bending. The effects of different strain-hardening characteristics of stainless steel in tension and in compression, progressive local and post-local buckling of stainless steel tubes and concrete confinement are taken into account in the computational models. The numerical models simulate the axial load-strain behavior, moment-curvature curves, axial load-deflection responses and axial load-moment strength interaction diagrams of CFSST columns. The book describes the mathematical formulations, computational procedures and model verifications for circular and rectangular CFSST short and slender columns. The behavior of CFSST columns under various loading conditions is demonstrated by numerous numerical examples. This book is written for practising structural and civil engineers, academic researchers and graduate students in civil engineering who are interested in the latest computational techniques and design methods for CFSST columns.
Publisher: CRC Press
ISBN: 1351005693
Category : Technology & Engineering
Languages : en
Pages : 149
Book Description
Concrete-filled stainless steel tubular (CFSST) columns are increasingly used in modern composite construction due to their high strength, high ductility, high corrosion resistance, high durability and aesthetics and ease of maintenance. Thin-walled CFSST columns are characterized by the different strain-hardening behavior of stainless steel in tension and in compression, local buckling of stainless steel tubes and concrete confinement. Design codes and numerical models often overestimate or underestimate the ultimate strengths of CFSST columns. This book presents accurate and efficient computational models for the nonlinear inelastic analysis and design of CFSST short and slender columns under axial load and biaxial bending. The effects of different strain-hardening characteristics of stainless steel in tension and in compression, progressive local and post-local buckling of stainless steel tubes and concrete confinement are taken into account in the computational models. The numerical models simulate the axial load-strain behavior, moment-curvature curves, axial load-deflection responses and axial load-moment strength interaction diagrams of CFSST columns. The book describes the mathematical formulations, computational procedures and model verifications for circular and rectangular CFSST short and slender columns. The behavior of CFSST columns under various loading conditions is demonstrated by numerous numerical examples. This book is written for practising structural and civil engineers, academic researchers and graduate students in civil engineering who are interested in the latest computational techniques and design methods for CFSST columns.
Design of Concrete Structures Using High-strength Steel Reinforcement
Author: Bahram M. Shahrooz
Publisher: Transportation Research Board
ISBN: 030915541X
Category : Science
Languages : en
Pages : 83
Book Description
TRB's National Cooperative Highway Research Program (NCHRP) Report 679: Design of Concrete Structures Using High-Strength Steel Reinforcement evaluates the existing American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications relevant to the use of high-strength reinforcing steel and other grades of reinforcing steel having no discernible yield plateau. The report also includes recommended language to the AASHTO LRFD Bridge Design Specifications that will permit the use of high-strength reinforcing steel with specified yield strengths not greater than 100 ksi. The Appendixes to NCHRP Report 679 were published online.
Publisher: Transportation Research Board
ISBN: 030915541X
Category : Science
Languages : en
Pages : 83
Book Description
TRB's National Cooperative Highway Research Program (NCHRP) Report 679: Design of Concrete Structures Using High-Strength Steel Reinforcement evaluates the existing American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications relevant to the use of high-strength reinforcing steel and other grades of reinforcing steel having no discernible yield plateau. The report also includes recommended language to the AASHTO LRFD Bridge Design Specifications that will permit the use of high-strength reinforcing steel with specified yield strengths not greater than 100 ksi. The Appendixes to NCHRP Report 679 were published online.
Structural Steelwork
Author: Dennis Lam
Publisher: CRC Press
ISBN: 0415531918
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
Completely revised and updated, this fourth edition of Structural Steelwork: Design to Limit State Theory describes the design theory and code requirements for common structures, connections, elements, and frames. It provides a comprehensive introduction to structural steelwork design with detailed explanations of the principles underlying steel design. See what’s in the Fourth Edition: All chapters updated and rearranged to comply with Eurocode 3 Compliant with the other Eurocodes Coverage of both UK and Singapore National Annexes Illustrated with fully worked examples and practice problems The fourth edition of an established and popular text, the book provides guidance for students of structural and civil engineering and is also sufficiently informative for practising engineers and architects who need an introduction to the Eurocodes.
Publisher: CRC Press
ISBN: 0415531918
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
Completely revised and updated, this fourth edition of Structural Steelwork: Design to Limit State Theory describes the design theory and code requirements for common structures, connections, elements, and frames. It provides a comprehensive introduction to structural steelwork design with detailed explanations of the principles underlying steel design. See what’s in the Fourth Edition: All chapters updated and rearranged to comply with Eurocode 3 Compliant with the other Eurocodes Coverage of both UK and Singapore National Annexes Illustrated with fully worked examples and practice problems The fourth edition of an established and popular text, the book provides guidance for students of structural and civil engineering and is also sufficiently informative for practising engineers and architects who need an introduction to the Eurocodes.
Reinforced Concrete Beams, Columns and Frames
Author: Jostein Hellesland
Publisher: John Wiley & Sons
ISBN: 1118635329
Category : Science
Languages : en
Pages : 224
Book Description
This book is focused on the theoretical and practical design of reinforced concrete beams, columns and frame structures. It is based on an analytical approach of designing normal reinforced concrete structural elements that are compatible with most international design rules, including for instance the European design rules – Eurocode 2 – for reinforced concrete structures. The book tries to distinguish between what belongs to the structural design philosophy of such structural elements (related to strength of materials arguments) and what belongs to the design rule aspects associated with specific characteristic data (for the material or loading parameters). A previous book, entitled Reinforced Concrete Beams, Columns and Frames – Mechanics and Design, deals with the fundamental aspects of the mechanics and design of reinforced concrete in general, both related to the Serviceability Limit State (SLS) and the Ultimate Limit State (ULS), whereas the current book deals with more advanced ULS aspects, along with instability and second-order analysis aspects. Some recent research results including the use of non-local mechanics are also presented. This book is aimed at Masters-level students, engineers, researchers and teachers in the field of reinforced concrete design. Most of the books in this area are very practical or code-oriented, whereas this book is more theoretically based, using rigorous mathematics and mechanics tools. Contents 1. Advanced Design at Ultimate Limit State (ULS). 2. Slender Compression Members – Mechanics and Design. 3. Approximate Analysis Methods. Appendix 1. Cardano’s Method. Appendix 2. Steel Reinforcement Table. About the Authors Jostein Hellesland has been Professor of Structural Mechanics at the University of Oslo, Norway since January 1988. His contribution to the field of stability has been recognized and magnified by many high-quality papers in famous international journals such as Engineering Structures, Thin-Walled Structures, Journal of Constructional Steel Research and Journal of Structural Engineering. Noël Challamel is Professor in Civil Engineering at UBS, University of South Brittany in France and chairman of the EMI-ASCE Stability committee. His contributions mainly concern the dynamics, stability and inelastic behavior of structural components, with special emphasis on Continuum Damage Mechanics (more than 70 publications in International peer-reviewed journals). Charles Casandjian was formerly Associate Professor at INSA (French National Institute of Applied Sciences), Rennes, France and the chairman of the course on reinforced concrete design. He has published work on the mechanics of concrete and is also involved in creating a web experience for teaching reinforced concrete design – BA-CORTEX. Christophe Lanos is Professor in Civil Engineering at the University of Rennes 1 in France. He has mainly published work on the mechanics of concrete, as well as other related subjects. He is also involved in creating a web experience for teaching reinforced concrete design – BA-CORTEX.
Publisher: John Wiley & Sons
ISBN: 1118635329
Category : Science
Languages : en
Pages : 224
Book Description
This book is focused on the theoretical and practical design of reinforced concrete beams, columns and frame structures. It is based on an analytical approach of designing normal reinforced concrete structural elements that are compatible with most international design rules, including for instance the European design rules – Eurocode 2 – for reinforced concrete structures. The book tries to distinguish between what belongs to the structural design philosophy of such structural elements (related to strength of materials arguments) and what belongs to the design rule aspects associated with specific characteristic data (for the material or loading parameters). A previous book, entitled Reinforced Concrete Beams, Columns and Frames – Mechanics and Design, deals with the fundamental aspects of the mechanics and design of reinforced concrete in general, both related to the Serviceability Limit State (SLS) and the Ultimate Limit State (ULS), whereas the current book deals with more advanced ULS aspects, along with instability and second-order analysis aspects. Some recent research results including the use of non-local mechanics are also presented. This book is aimed at Masters-level students, engineers, researchers and teachers in the field of reinforced concrete design. Most of the books in this area are very practical or code-oriented, whereas this book is more theoretically based, using rigorous mathematics and mechanics tools. Contents 1. Advanced Design at Ultimate Limit State (ULS). 2. Slender Compression Members – Mechanics and Design. 3. Approximate Analysis Methods. Appendix 1. Cardano’s Method. Appendix 2. Steel Reinforcement Table. About the Authors Jostein Hellesland has been Professor of Structural Mechanics at the University of Oslo, Norway since January 1988. His contribution to the field of stability has been recognized and magnified by many high-quality papers in famous international journals such as Engineering Structures, Thin-Walled Structures, Journal of Constructional Steel Research and Journal of Structural Engineering. Noël Challamel is Professor in Civil Engineering at UBS, University of South Brittany in France and chairman of the EMI-ASCE Stability committee. His contributions mainly concern the dynamics, stability and inelastic behavior of structural components, with special emphasis on Continuum Damage Mechanics (more than 70 publications in International peer-reviewed journals). Charles Casandjian was formerly Associate Professor at INSA (French National Institute of Applied Sciences), Rennes, France and the chairman of the course on reinforced concrete design. He has published work on the mechanics of concrete and is also involved in creating a web experience for teaching reinforced concrete design – BA-CORTEX. Christophe Lanos is Professor in Civil Engineering at the University of Rennes 1 in France. He has mainly published work on the mechanics of concrete, as well as other related subjects. He is also involved in creating a web experience for teaching reinforced concrete design – BA-CORTEX.
Design of Steel-Concrete Composite Structures Using High-Strength Materials
Author: J.Y. Richard Liew
Publisher: Woodhead Publishing
ISBN: 0128234369
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
High-strength materials offer alternatives to frequently used materials for high-rise construction. A material of higher strength means a smaller member size is required to resist the design load. However, high-strength concrete is brittle, and high-strength thin steel plates are prone to local buckling. A solution to overcome such problems is to adopt a steel-concrete composite design in which concrete provides lateral restraint to steel plates against local buckling, and steel plates provide confinement to high-strength concrete. Design of Steel-Concrete Composite Structures Using High Strength Materials provides guidance on the design of composite steel-concrete structures using combined high-strength concretes and steels. The book includes a database of over 2,500 test results on composite columns to evaluate design methods, and presents calculations to determine critical parameters affecting the strength and ductility of high-strength composite columns. Finally, the book proposes design methods for axial-moment interaction curves in composite columns. This allows a unified approach to the design of columns with normal- and high-strength steel concrete materials. This book offers civil engineers, structural engineers, and researchers studying the mechanical performance of composite structures in the use of high-strength materials to design and construct advanced tall buildings. - Presents the design and construction of composite structures using high-strength concrete and high-strength steel, complementing and extending Eurocode 4 standards - Addresses a gap in design codes in the USA, China, Europe and Japan to cover composite structures using high-strength concrete and steel in a comprehensive way - Gives insight into the design of concrete-filled steel tubes and concrete-encased steel members - Suggests a unified approach to designing columns with normal- and high-strength steel and concrete
Publisher: Woodhead Publishing
ISBN: 0128234369
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
High-strength materials offer alternatives to frequently used materials for high-rise construction. A material of higher strength means a smaller member size is required to resist the design load. However, high-strength concrete is brittle, and high-strength thin steel plates are prone to local buckling. A solution to overcome such problems is to adopt a steel-concrete composite design in which concrete provides lateral restraint to steel plates against local buckling, and steel plates provide confinement to high-strength concrete. Design of Steel-Concrete Composite Structures Using High Strength Materials provides guidance on the design of composite steel-concrete structures using combined high-strength concretes and steels. The book includes a database of over 2,500 test results on composite columns to evaluate design methods, and presents calculations to determine critical parameters affecting the strength and ductility of high-strength composite columns. Finally, the book proposes design methods for axial-moment interaction curves in composite columns. This allows a unified approach to the design of columns with normal- and high-strength steel concrete materials. This book offers civil engineers, structural engineers, and researchers studying the mechanical performance of composite structures in the use of high-strength materials to design and construct advanced tall buildings. - Presents the design and construction of composite structures using high-strength concrete and high-strength steel, complementing and extending Eurocode 4 standards - Addresses a gap in design codes in the USA, China, Europe and Japan to cover composite structures using high-strength concrete and steel in a comprehensive way - Gives insight into the design of concrete-filled steel tubes and concrete-encased steel members - Suggests a unified approach to designing columns with normal- and high-strength steel and concrete
Steel Fiber Reinforced Concrete
Author: Harvinder Singh
Publisher: Springer
ISBN: 981102507X
Category : Technology & Engineering
Languages : en
Pages : 181
Book Description
This book discusses design aspects of steel fiber-reinforced concrete (SFRC) members, including the behavior of the SFRC and its modeling. It also examines the effect of various parameters governing the response of SFRC members in detail. Unlike other publications available in the form of guidelines, which mainly describe design methods based on experimental results, it describes the basic concepts and principles of designing structural members using SFRC as a structural material, predominantly subjected to flexure and shear. Although applications to special structures, such as bridges, retaining walls, tanks and silos are not specifically covered, the fundamental design concepts remain the same and can easily be extended to these elements. It introduces the principles and related theories for predicting the role of steel fibers in reinforcing concrete members concisely and logically, and presents various material models to predict the response of SFRC members in detail. These are then gradually extended to develop an analytical flexural model for the analysis and design of SFRC members. The lack of such a discussion is a major hindrance to the adoption of SFRC as a structural material in routine design practice. This book helps users appraise the role of fiber as reinforcement in concrete members used alone and/or along with conventional rebars. Applications to singly and doubly reinforced beams and slabs are illustrated with examples, using both SFRC and conventional reinforced concrete as a structural material. The influence of the addition of steel fibers on various mechanical properties of the SFRC members is discussed in detail, which is invaluable in helping designers and engineers create optimum designs. Lastly, it describes the generally accepted methods for specifying the steel fibers at the site along with the SFRC mixing methods, storage and transport and explains in detail methods to validate the adopted design. This book is useful to practicing engineers, researchers, and students.
Publisher: Springer
ISBN: 981102507X
Category : Technology & Engineering
Languages : en
Pages : 181
Book Description
This book discusses design aspects of steel fiber-reinforced concrete (SFRC) members, including the behavior of the SFRC and its modeling. It also examines the effect of various parameters governing the response of SFRC members in detail. Unlike other publications available in the form of guidelines, which mainly describe design methods based on experimental results, it describes the basic concepts and principles of designing structural members using SFRC as a structural material, predominantly subjected to flexure and shear. Although applications to special structures, such as bridges, retaining walls, tanks and silos are not specifically covered, the fundamental design concepts remain the same and can easily be extended to these elements. It introduces the principles and related theories for predicting the role of steel fibers in reinforcing concrete members concisely and logically, and presents various material models to predict the response of SFRC members in detail. These are then gradually extended to develop an analytical flexural model for the analysis and design of SFRC members. The lack of such a discussion is a major hindrance to the adoption of SFRC as a structural material in routine design practice. This book helps users appraise the role of fiber as reinforcement in concrete members used alone and/or along with conventional rebars. Applications to singly and doubly reinforced beams and slabs are illustrated with examples, using both SFRC and conventional reinforced concrete as a structural material. The influence of the addition of steel fibers on various mechanical properties of the SFRC members is discussed in detail, which is invaluable in helping designers and engineers create optimum designs. Lastly, it describes the generally accepted methods for specifying the steel fibers at the site along with the SFRC mixing methods, storage and transport and explains in detail methods to validate the adopted design. This book is useful to practicing engineers, researchers, and students.
Basic Principles of Concrete Structures
Author: Xianglin Gu
Publisher: Springer
ISBN: 3662485656
Category : Technology & Engineering
Languages : en
Pages : 620
Book Description
Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compared with mechanics courses, the basic theories of reinforced concrete structures cannot be solely derived by theoretical analysis. And compared with design courses, this course emphasizes the introduction of basic theories rather than simply being a translation of design specifications. The book will focus on both the theoretical derivations and the engineering practices.
Publisher: Springer
ISBN: 3662485656
Category : Technology & Engineering
Languages : en
Pages : 620
Book Description
Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compared with mechanics courses, the basic theories of reinforced concrete structures cannot be solely derived by theoretical analysis. And compared with design courses, this course emphasizes the introduction of basic theories rather than simply being a translation of design specifications. The book will focus on both the theoretical derivations and the engineering practices.