Design and Higher Order Optimisation of Final Focus Systems for Linear Colliders PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Design and Higher Order Optimisation of Final Focus Systems for Linear Colliders PDF full book. Access full book title Design and Higher Order Optimisation of Final Focus Systems for Linear Colliders by Eduardo Marín Lacoma. Download full books in PDF and EPUB format.

Design and Higher Order Optimisation of Final Focus Systems for Linear Colliders

Design and Higher Order Optimisation of Final Focus Systems for Linear Colliders PDF Author: Eduardo Marín Lacoma
Publisher:
ISBN:
Category :
Languages : en
Pages : 130

Book Description
The accelerator and particle physics communities are considering a lepton Linear Collider LC as the most appropriate machine to carry out high precision particle physics research in the TeV energy regime. The Compact Linear Collider CLIC and the International Linear Collider ILC are the two proposals for the future e+e- LC. Both designs achieve a luminosity L above 10̂(34) cm-2 s-1 at the interaction point IP, satisfying the particle physics requirements. The LC consists of different systems, being the Final Focus System FFS the last one before colliding the beam at the IP. It is responsible to focus the beams at sizes in the range of nanometres by means of the Final Doublet FD. The FFS designs of the CLIC and ILC projects are based on a new local chromaticity correction scheme which has never been experimentally tested before. The Accelerator Test Facility ATF2 at KEK (Japan) aims to experimentally verify the feasibility of the FFS based on this novel scheme. The present thesis is devoted to the design and higher order optimisation of FFS for linear colliders based on the local chromaticity correction scheme. The CLIC design luminosity L0 is 5.9·10̂(34) cm-2 s-1 assuming head-on collisions. However the beams cross each other at the IP forming an angle of 20 mrad. Due to this crossing scheme the luminosity would be reduced by 90%. Crab cavities are dedicated to tilt the bunches in order to provide head-on like collisions preserving the design L0. In this thesis different solutions that recover the design luminosity for the CLIC FFS are proposed. The designs of a new ATF2 Nominal and Ultra-low beta* lattices, to test the feasibility of the ILC and CLIC FFS respectively, are presented in this thesis. The expected IP vertical beam sizes sy* for these lattices are 38 and 23 nm respectively, at this beam size regime the magnetic field quality of the FFS magnets is a concern. Indeed, the evaluated sy* with the measured multipole components is 100% for the Nominal lattice and 400% for the Ultra-low beta* lattice. The study of the higher order aberrations performed in this thesis is crucial for identifying possible cures that minimise the observed beam size growth. Different solutions have been studied: (i) replacing the FD by better field quality magnets, (ii) swapping the ATF2 quadrupole magnets according to their skew sextupole component and (iii) modifying the lattice optics. The new lattice designs ATF2 Bx2.5By1.0 and ATF2 Ultra-low betay* are based on the prosposed solutions. The impact of the multipoles components is effectively minimsed for both new designs, achieving a sy* equal to 38 and 27 nm ,respectively. The tuning study of the FFS determines its feasibility under realistic error conditions. 100 machines with different initial error configurations are used to address this problem. The tuning simulation study for the alternative CLIC FFS design takes into account BPM resolution, the effect of synchrotron radiation and the misalignment errors of the magnets, being the later a critical parameter on the tuning performance of the system. The motion of the magnetic centre when shunting the quadrupole magnet might represent a limiting factor for further improvement of its alignment. Dedicated measurements at ATF2 have shown a motion of the magnetic centre below 1 micrometre for a shunting variation of 20%. Under this alignment condition the tuning study of the CLIC FFS shows that 80% of the machines reach a L equal or above than L0. The errors included in the tuning study of the ATF2 lattices are misalignments, tilts and miss-powering of the ATF2 FFS magnets. The simulated tuning results show that 80% of the machines reach a final sy* that does not exceed in more than 11% and 35% the design sy* for the ATF2 Bx2.5By1.0 and Ultra-low beta_y* lattices respectively. These results demonstrate the theoretical feasebility of FFS based on the novel chromaticity correction scheme.

Design and Higher Order Optimisation of Final Focus Systems for Linear Colliders

Design and Higher Order Optimisation of Final Focus Systems for Linear Colliders PDF Author: Eduardo Marín Lacoma
Publisher:
ISBN:
Category :
Languages : en
Pages : 130

Book Description
The accelerator and particle physics communities are considering a lepton Linear Collider LC as the most appropriate machine to carry out high precision particle physics research in the TeV energy regime. The Compact Linear Collider CLIC and the International Linear Collider ILC are the two proposals for the future e+e- LC. Both designs achieve a luminosity L above 10̂(34) cm-2 s-1 at the interaction point IP, satisfying the particle physics requirements. The LC consists of different systems, being the Final Focus System FFS the last one before colliding the beam at the IP. It is responsible to focus the beams at sizes in the range of nanometres by means of the Final Doublet FD. The FFS designs of the CLIC and ILC projects are based on a new local chromaticity correction scheme which has never been experimentally tested before. The Accelerator Test Facility ATF2 at KEK (Japan) aims to experimentally verify the feasibility of the FFS based on this novel scheme. The present thesis is devoted to the design and higher order optimisation of FFS for linear colliders based on the local chromaticity correction scheme. The CLIC design luminosity L0 is 5.9·10̂(34) cm-2 s-1 assuming head-on collisions. However the beams cross each other at the IP forming an angle of 20 mrad. Due to this crossing scheme the luminosity would be reduced by 90%. Crab cavities are dedicated to tilt the bunches in order to provide head-on like collisions preserving the design L0. In this thesis different solutions that recover the design luminosity for the CLIC FFS are proposed. The designs of a new ATF2 Nominal and Ultra-low beta* lattices, to test the feasibility of the ILC and CLIC FFS respectively, are presented in this thesis. The expected IP vertical beam sizes sy* for these lattices are 38 and 23 nm respectively, at this beam size regime the magnetic field quality of the FFS magnets is a concern. Indeed, the evaluated sy* with the measured multipole components is 100% for the Nominal lattice and 400% for the Ultra-low beta* lattice. The study of the higher order aberrations performed in this thesis is crucial for identifying possible cures that minimise the observed beam size growth. Different solutions have been studied: (i) replacing the FD by better field quality magnets, (ii) swapping the ATF2 quadrupole magnets according to their skew sextupole component and (iii) modifying the lattice optics. The new lattice designs ATF2 Bx2.5By1.0 and ATF2 Ultra-low betay* are based on the prosposed solutions. The impact of the multipoles components is effectively minimsed for both new designs, achieving a sy* equal to 38 and 27 nm ,respectively. The tuning study of the FFS determines its feasibility under realistic error conditions. 100 machines with different initial error configurations are used to address this problem. The tuning simulation study for the alternative CLIC FFS design takes into account BPM resolution, the effect of synchrotron radiation and the misalignment errors of the magnets, being the later a critical parameter on the tuning performance of the system. The motion of the magnetic centre when shunting the quadrupole magnet might represent a limiting factor for further improvement of its alignment. Dedicated measurements at ATF2 have shown a motion of the magnetic centre below 1 micrometre for a shunting variation of 20%. Under this alignment condition the tuning study of the CLIC FFS shows that 80% of the machines reach a L equal or above than L0. The errors included in the tuning study of the ATF2 lattices are misalignments, tilts and miss-powering of the ATF2 FFS magnets. The simulated tuning results show that 80% of the machines reach a final sy* that does not exceed in more than 11% and 35% the design sy* for the ATF2 Bx2.5By1.0 and Ultra-low beta_y* lattices respectively. These results demonstrate the theoretical feasebility of FFS based on the novel chromaticity correction scheme.

This Indenture of Three Parts Made the Twentieth Day of July in the Twenty Ninth Year of the Reign of Our Sovereign Lord George the Third ... in the Year of Our Lord One Thousand Seven Hundred and Eighty Nine Between Joseph Sladen of the Town of Ffolkstour in the County of Kent Gentleman of the First Part John Jones of Stanford ... (only Son and Heir and Also Devisee of John Jones Late of Stanford ...) of the Second Part and Isaac Tournay of the Town and Port of Hythe in the Said County of Kent Gentleman (a Trustee ... Appointed by and for and on the Behalf of the Said John Jones) of the Third Part ...

This Indenture of Three Parts Made the Twentieth Day of July in the Twenty Ninth Year of the Reign of Our Sovereign Lord George the Third ... in the Year of Our Lord One Thousand Seven Hundred and Eighty Nine Between Joseph Sladen of the Town of Ffolkstour in the County of Kent Gentleman of the First Part John Jones of Stanford ... (only Son and Heir and Also Devisee of John Jones Late of Stanford ...) of the Second Part and Isaac Tournay of the Town and Port of Hythe in the Said County of Kent Gentleman (a Trustee ... Appointed by and for and on the Behalf of the Said John Jones) of the Third Part ... PDF Author:
Publisher:
ISBN:
Category : Mortgages
Languages : en
Pages : 2

Book Description


Next-Generation Linear Collider Final Focus System Stability Tolerances

Next-Generation Linear Collider Final Focus System Stability Tolerances PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Book Description
The design of final focus systems for the next generation of linear colliders has evolved largely from the experience gained with the design and operation of the Stanford Linear Collider (SLC) and with the design of the Final Focus Test Beam (FFTB). We will compare the tolerances for two typical designs for a next-generation linear collider final focus system. The chromaticity generated by strong focusing systems, like the final quadrupole doublet before the interaction point of a linear collider, can be canceled by the introduction of sextupoles in a dispersive region. These sextupoles must be inserted in pairs separated by a -I transformation (Chromatic Correction Section) in order to cancel the strong geometric aberrations generated by sextupoles. Designs proposed for both the JLC or NLC final focus systems have two separate chromatic correction sections, one for each transverse plane separated by a ''[beta]-exchanger'' to manipulate the [beta]-function between the two CCS. The introduction of sextupoles and bending magnets gives rise to higher order aberrations (long sextupole and chrome-geometries) and radiation induced aberrations (chromaticity unbalance and ''Oide effect'') and one must optimize the lattice accordingly.

A RECIPE FOR LINEAR COLLIDER FINAL FOCUS SYSTEM DESIGN.

A RECIPE FOR LINEAR COLLIDER FINAL FOCUS SYSTEM DESIGN. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
The design of Final Focus systems for linear colliders is challenging because of the large demagnifications needed to produce nanometer-sized beams at the interaction point. Simple first- and second-order matrix matching have proven insufficient for this task, and minimization of third- and higher-order aberrations is essential. An appropriate strategy is required for the latter to be successful. A recipe for Final Focus design, and a set of computational tools used to implement this approach, are described herein. An example of the use of this procedure is given.

Final Focus Systems for Linear Colliders

Final Focus Systems for Linear Colliders PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The final focus system of a linear collider must perform two primary functions, it must focus the two opposing beams so that their transverse dimensions at the interaction point are small enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. In addition, the final focus system must transport the outgoing beams to a location where they can be recycled or safely dumped. Elementary optical considerations for linear collider final focus systems are discussed, followed by chromatic aberrations. The design of the final focus system of the SLAC Linear Collider (SLC) is described. Tuning and diagnostics and steering to collision are discussed. Most of the examples illustrating the concepts covered are drawn from the SLC, but the principles and conclusions are said to be generally applicable to other linear collider designs as well. 26 refs., 17 figs. (LEW).

A Conceptual Design of Final Focus Systems for Linear Colliders

A Conceptual Design of Final Focus Systems for Linear Colliders PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Linear colliders are a relatively recent development in the evolution of particle accelerators. This report discusses some of the approaches that have been considered for the design of Final Focus Systems to demagnify the beam exiting from a linac to the small size suitable for collisions at the interaction point. The system receiving the most attention is the one adopted for the SLAC Linear Collider. However, the theory and optical techniques discussed should be applicable to the design efforts for future machines.

FFADA COMPUTER DESIGN OF FINAL FOCUS SYSTEMS FOR LINEAR COLLIDERS.

FFADA COMPUTER DESIGN OF FINAL FOCUS SYSTEMS FOR LINEAR COLLIDERS. PDF Author: O. Napoly
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


New Developments in Linear Colliders Final Focus Systems

New Developments in Linear Colliders Final Focus Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The length, complexity and cost of the present Final Focus designs for linear colliders grows very quickly with the beam energy. In this paper, a novel final focus system is presented and compared with the one proposed for NLC [1]. This new design is simpler, shorter and cheaper, with comparable bandwidth, tolerances and tunability. Moreover, the length scales slower than linearly with energy allowing for a more flexible design which is applicable over a much larger energy range.

A Novel Final Focus Design for High Energy Linear Colliders

A Novel Final Focus Design for High Energy Linear Colliders PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 3

Book Description
The length, complexity and cost of the present Final Focus designs for linear colliders grows very quickly with the beam energy. In this letter, a novel final focus system is presented and compared with the one proposed for NLC. This new design is simpler, shorter and cheaper, with comparable bandwidth, tolerances and tunability. Moreover, the length scales slower than linearly with energy allowing for a more flexible design which is applicable over a much larger energy range.

Expanded Studies of Linear Collider Final Focus Systems at the Final Focus Test Beam

Expanded Studies of Linear Collider Final Focus Systems at the Final Focus Test Beam PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 156

Book Description
In order to meet their luminosity goals, linear colliders operating in the center-of-mass energy range from 3,50 to 1,500 GeV will need to deliver beams which are as small as a few Manometers tall, with x:y aspect ratios as large as 100. The Final Focus Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its purpose is to provide demagnification equivalent to those in the future linear collider, which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by 60 manometers (vertical). In order to achieve the desired spot sizes, the FFTB beam optics must be tuned to eliminate aberrations and other errors, and to ensure that the optics conform to the desired final conditions and the measured initial conditions of the beam. Using a combination of incoming-beam diagnostics. beam-based local diagnostics, and global tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7 microns by 70 manometers. In addition, the chromatic properties of the FFTB have been studied using two techniques and found to be acceptable. Descriptions of the hardware and techniques used in these studies are presented, along with results and suggestions for future research.