Author: Antonella Macagnano
Publisher: MDPI
ISBN: 3039287389
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
Due to their unique size-dependent physicochemical properties, nanostructured thin films are used in a wide range of applications from smart coating and drug delivery to electrocatalysis and highly-sensitive sensors. Depending on the targeted application and the deposition technique, these materials have been designed and developed by tuning their atomic-molecular 2D- and/or 3D-aggregation, thickness, crystallinity, and porosity, having effects on their optical, mechanical, catalytic, and conductive properties. Several open questions remain about the impact of nanomaterial production and use on environment and health. Many efforts are currently being made not only to prevent nanotechnologies and nanomaterials from contributing to environmental pollution but also to design nanomaterials to support, control, and protect the environment. This Special Issue aims to cover the recent advances in designing nanostructured films focusing on environmental issues related to their fabrication processes (e.g., low power and low cost technologies, the use of environmentally friendly solvents), their precursors (e.g., waste-recycled, bio-based, biodegradable, and natural materials), their applications (e.g., controlled release of chemicals, mimicking of natural processes, and clean energy conversion and storage), and their use in monitoring environment pollution (e.g., sensors optically- or electrically-sensitive to pollutants)
Design and Development of Nanostructured Thin Films
Author: Antonella Macagnano
Publisher: MDPI
ISBN: 3039287389
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
Due to their unique size-dependent physicochemical properties, nanostructured thin films are used in a wide range of applications from smart coating and drug delivery to electrocatalysis and highly-sensitive sensors. Depending on the targeted application and the deposition technique, these materials have been designed and developed by tuning their atomic-molecular 2D- and/or 3D-aggregation, thickness, crystallinity, and porosity, having effects on their optical, mechanical, catalytic, and conductive properties. Several open questions remain about the impact of nanomaterial production and use on environment and health. Many efforts are currently being made not only to prevent nanotechnologies and nanomaterials from contributing to environmental pollution but also to design nanomaterials to support, control, and protect the environment. This Special Issue aims to cover the recent advances in designing nanostructured films focusing on environmental issues related to their fabrication processes (e.g., low power and low cost technologies, the use of environmentally friendly solvents), their precursors (e.g., waste-recycled, bio-based, biodegradable, and natural materials), their applications (e.g., controlled release of chemicals, mimicking of natural processes, and clean energy conversion and storage), and their use in monitoring environment pollution (e.g., sensors optically- or electrically-sensitive to pollutants)
Publisher: MDPI
ISBN: 3039287389
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
Due to their unique size-dependent physicochemical properties, nanostructured thin films are used in a wide range of applications from smart coating and drug delivery to electrocatalysis and highly-sensitive sensors. Depending on the targeted application and the deposition technique, these materials have been designed and developed by tuning their atomic-molecular 2D- and/or 3D-aggregation, thickness, crystallinity, and porosity, having effects on their optical, mechanical, catalytic, and conductive properties. Several open questions remain about the impact of nanomaterial production and use on environment and health. Many efforts are currently being made not only to prevent nanotechnologies and nanomaterials from contributing to environmental pollution but also to design nanomaterials to support, control, and protect the environment. This Special Issue aims to cover the recent advances in designing nanostructured films focusing on environmental issues related to their fabrication processes (e.g., low power and low cost technologies, the use of environmentally friendly solvents), their precursors (e.g., waste-recycled, bio-based, biodegradable, and natural materials), their applications (e.g., controlled release of chemicals, mimicking of natural processes, and clean energy conversion and storage), and their use in monitoring environment pollution (e.g., sensors optically- or electrically-sensitive to pollutants)
Nanostructured Thin Films
Author: Maria Benelmekki
Publisher: Elsevier
ISBN: 0081025734
Category : Technology & Engineering
Languages : en
Pages : 336
Book Description
Nanostructured Thin Films: Fundamentals and Applications presents an overview of the synthesis and characterization of thin films and their nanocomposites. Both vapor phase and liquid phase approaches are discussed, along with the methods that are sufficiently attractive for large-scale production. Examples of applications in clean energy, sensors, biomedicine, anticorrosion and surface modification are also included. As the applications of thin films in nanomedicine, cell phones, solar cell-powered devices, and in the protection of structural materials continues to grow, this book presents an important research reference for anyone seeking an informed overview on their structure and applications. - Shows how thin films are being used to create more efficient devices in the fields of medicine and energy harvesting - Discusses how to alter the design of nanostructured thin films by vapor phase and liquid phase methods - Explores how modifying the structure of thin films for specific applications enhances their performance
Publisher: Elsevier
ISBN: 0081025734
Category : Technology & Engineering
Languages : en
Pages : 336
Book Description
Nanostructured Thin Films: Fundamentals and Applications presents an overview of the synthesis and characterization of thin films and their nanocomposites. Both vapor phase and liquid phase approaches are discussed, along with the methods that are sufficiently attractive for large-scale production. Examples of applications in clean energy, sensors, biomedicine, anticorrosion and surface modification are also included. As the applications of thin films in nanomedicine, cell phones, solar cell-powered devices, and in the protection of structural materials continues to grow, this book presents an important research reference for anyone seeking an informed overview on their structure and applications. - Shows how thin films are being used to create more efficient devices in the fields of medicine and energy harvesting - Discusses how to alter the design of nanostructured thin films by vapor phase and liquid phase methods - Explores how modifying the structure of thin films for specific applications enhances their performance
Advances in Thin Films, Nanostructured Materials, and Coatings
Author: Alexander D. Pogrebnjak
Publisher: Springer
ISBN: 9811361339
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
This book highlights the latest advances in chemical and physical methods for thin-film deposition and surface engineering, including ion- and plasma-assisted processes, focusing on explaining the synthesis/processing–structure–properties relationship for a variety of thin-film systems. It covers topics such as advances in thin-film synthesis; new thin-film materials: diamond-like films, granular alloys, high-entropy alloys, oxynitrides, and intermetallic compounds; ultra-hard, wear- and oxidation-resistant and multifunctional coatings; superconducting, magnetic, semiconducting, and dielectric films; electrochemical and electroless depositions; thin-film characterization and instrumentation; and industrial applications.
Publisher: Springer
ISBN: 9811361339
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
This book highlights the latest advances in chemical and physical methods for thin-film deposition and surface engineering, including ion- and plasma-assisted processes, focusing on explaining the synthesis/processing–structure–properties relationship for a variety of thin-film systems. It covers topics such as advances in thin-film synthesis; new thin-film materials: diamond-like films, granular alloys, high-entropy alloys, oxynitrides, and intermetallic compounds; ultra-hard, wear- and oxidation-resistant and multifunctional coatings; superconducting, magnetic, semiconducting, and dielectric films; electrochemical and electroless depositions; thin-film characterization and instrumentation; and industrial applications.
Chemical Solution Synthesis for Materials Design and Thin Film Device Applications
Author: Soumen Das
Publisher: Elsevier
ISBN: 0128197188
Category : Technology & Engineering
Languages : en
Pages : 746
Book Description
Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing
Publisher: Elsevier
ISBN: 0128197188
Category : Technology & Engineering
Languages : en
Pages : 746
Book Description
Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing
Recent Advances in Thin Films
Author: Sushil Kumar
Publisher: Springer Nature
ISBN: 9811561168
Category : Technology & Engineering
Languages : en
Pages : 721
Book Description
This volume comprises the expert contributions from the invited speakers at the 17th International Conference on Thin Films (ICTF 2017), held at CSIR-NPL, New Delhi, India. Thin film research has become increasingly important over the last few decades owing to the applications in latest technologies and devices. The book focuses on current advances in thin film deposition processes and characterization including thin film measurements. The chapters cover different types of thin films like metal, dielectric, organic and inorganic, and their diverse applications across transistors, resistors, capacitors, memory elements for computers, optical filters and mirrors, sensors, solar cells, LED's, transparent conducting coatings for liquid crystal display, printed circuit board, and automobile headlamp covers. This book can be a useful reference for students, researchers as well as industry professionals by providing an up-to-date knowledge on thin films and coatings.
Publisher: Springer Nature
ISBN: 9811561168
Category : Technology & Engineering
Languages : en
Pages : 721
Book Description
This volume comprises the expert contributions from the invited speakers at the 17th International Conference on Thin Films (ICTF 2017), held at CSIR-NPL, New Delhi, India. Thin film research has become increasingly important over the last few decades owing to the applications in latest technologies and devices. The book focuses on current advances in thin film deposition processes and characterization including thin film measurements. The chapters cover different types of thin films like metal, dielectric, organic and inorganic, and their diverse applications across transistors, resistors, capacitors, memory elements for computers, optical filters and mirrors, sensors, solar cells, LED's, transparent conducting coatings for liquid crystal display, printed circuit board, and automobile headlamp covers. This book can be a useful reference for students, researchers as well as industry professionals by providing an up-to-date knowledge on thin films and coatings.
Nanostructured Thin Films and Nanodispersion Strengthened Coatings
Author: Andrey A. Voevodin
Publisher: Springer Science & Business Media
ISBN: 1402022220
Category : Technology & Engineering
Languages : en
Pages : 333
Book Description
This volume contains proceedings of the NATO-Russia Advanced Research Workshop on Nanostructured Thin Films and Nanodispersion Strengthened Coatings (December, 2003, Moscow). During this Workshop leading researchers from twelve countries had presented and discussed most recent developments in the fields of plasma physics and surface engineering related to the preparation and applications of nanostructured thin films and nanodispersion strengthened coatings. These presentations are encompassed in 31 individual chapters. The chapters are assembled in five parts in according to the workshop sessions. Part I is a compilation of chapters on hard and tribological coatings. The recent advances in this area are significant in that it is now possible to engineer strong, hard, and tough coatings that can operate at temperatures higher than 1200 ?C and exhibit ‘smart’, adaptive characteristics. These coatings are based on an amorphous matrix, e. g. nitrides, carbides, borides, or carbon, in which there is a controlled nucleation and growth of ultra hard nanoparticles of crystalline carbides, nitrides, borides and oxides. The critical feature is the control of both the particle size, i. e. , less than 10 nm, and interpartical spacing of a few nanometers. The ‘smart’ or adaptive characteristic is engineered into the nanostructures using similar sized (less than 10 nm) particles of metallic chalcogenidese, ductile metals, or glass forming elements to provide high lubricity and chemical adaptation at the environment change, e. g. , high and low humidities and temperatures.
Publisher: Springer Science & Business Media
ISBN: 1402022220
Category : Technology & Engineering
Languages : en
Pages : 333
Book Description
This volume contains proceedings of the NATO-Russia Advanced Research Workshop on Nanostructured Thin Films and Nanodispersion Strengthened Coatings (December, 2003, Moscow). During this Workshop leading researchers from twelve countries had presented and discussed most recent developments in the fields of plasma physics and surface engineering related to the preparation and applications of nanostructured thin films and nanodispersion strengthened coatings. These presentations are encompassed in 31 individual chapters. The chapters are assembled in five parts in according to the workshop sessions. Part I is a compilation of chapters on hard and tribological coatings. The recent advances in this area are significant in that it is now possible to engineer strong, hard, and tough coatings that can operate at temperatures higher than 1200 ?C and exhibit ‘smart’, adaptive characteristics. These coatings are based on an amorphous matrix, e. g. nitrides, carbides, borides, or carbon, in which there is a controlled nucleation and growth of ultra hard nanoparticles of crystalline carbides, nitrides, borides and oxides. The critical feature is the control of both the particle size, i. e. , less than 10 nm, and interpartical spacing of a few nanometers. The ‘smart’ or adaptive characteristic is engineered into the nanostructures using similar sized (less than 10 nm) particles of metallic chalcogenidese, ductile metals, or glass forming elements to provide high lubricity and chemical adaptation at the environment change, e. g. , high and low humidities and temperatures.
Functional Thin Films and Nanostructures for Sensors
Author: Anis Zribi
Publisher: Springer Science & Business Media
ISBN: 0387686096
Category : Technology & Engineering
Languages : en
Pages : 224
Book Description
This book discusses advances in functional thin films for sensors and novel concepts for future breakthroughs. The focus is on guidelines and design rules for sensor systems, interaction between functional thin films and other sensor subsystems, fundamentals behind the intrinsic functionality in sensing thin films and nanostructures, state-of-the-art technologies used to develop sensors today and concrete examples of sensor designs.
Publisher: Springer Science & Business Media
ISBN: 0387686096
Category : Technology & Engineering
Languages : en
Pages : 224
Book Description
This book discusses advances in functional thin films for sensors and novel concepts for future breakthroughs. The focus is on guidelines and design rules for sensor systems, interaction between functional thin films and other sensor subsystems, fundamentals behind the intrinsic functionality in sensing thin films and nanostructures, state-of-the-art technologies used to develop sensors today and concrete examples of sensor designs.
Contemporary Nanomaterials in Material Engineering Applications
Author: Nabisab Mujawar Mubarak
Publisher: Springer Nature
ISBN: 3030627616
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
This book covers remarkable contemporary nanomaterials such as carbon nanomaterials, nanoclays, quantum dots, MXene, and metal-organic frameworks. Each chapter discusses the synthesis techniques, characterization methods, properties, and the nanomaterials’ use in different aspects of biomedical, energy, polymers, material construction, biosensors, coatings, and catalysis. Moreover, commercialization challenges and environmental risks of nanomaterials are also covered in depth. The book provides an understanding of the fundamental properties, limitations and challenges in nanomaterials synthesis, serving as a valuable resource for researchers, graduate students, academicians, and consultants working with nanomaterials for engineering applications.
Publisher: Springer Nature
ISBN: 3030627616
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
This book covers remarkable contemporary nanomaterials such as carbon nanomaterials, nanoclays, quantum dots, MXene, and metal-organic frameworks. Each chapter discusses the synthesis techniques, characterization methods, properties, and the nanomaterials’ use in different aspects of biomedical, energy, polymers, material construction, biosensors, coatings, and catalysis. Moreover, commercialization challenges and environmental risks of nanomaterials are also covered in depth. The book provides an understanding of the fundamental properties, limitations and challenges in nanomaterials synthesis, serving as a valuable resource for researchers, graduate students, academicians, and consultants working with nanomaterials for engineering applications.
Nanostructured Thin Films and Surfaces
Author:
Publisher: John Wiley & Sons
ISBN: 3527321551
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
The book series Nanomaterials for the Life Sciences, provides an in-depth overview of all nanomaterial types and their uses in the life sciences. Each volume is dedicated to a specific material class and covers fundamentals, synthesis and characterization strategies, structure-property relationships and biomedical applications. The series brings nanomaterials to the Life Scientists and life science to the Materials Scientists so that synergies are seen and developed to the fullest. Written by international experts of various facets of this exciting field of research, the series is aimed at scientists of the following disciplines: biology, chemistry, materials science, physics, bioengineering, and medicine, together with cell biology, biomedical engineering, pharmaceutical chemistry, and toxicology, both in academia and fundamental research as well as in pharmaceutical companies. VOLUME 5 - Nanostructured Thin Films and Surfaces
Publisher: John Wiley & Sons
ISBN: 3527321551
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
The book series Nanomaterials for the Life Sciences, provides an in-depth overview of all nanomaterial types and their uses in the life sciences. Each volume is dedicated to a specific material class and covers fundamentals, synthesis and characterization strategies, structure-property relationships and biomedical applications. The series brings nanomaterials to the Life Scientists and life science to the Materials Scientists so that synergies are seen and developed to the fullest. Written by international experts of various facets of this exciting field of research, the series is aimed at scientists of the following disciplines: biology, chemistry, materials science, physics, bioengineering, and medicine, together with cell biology, biomedical engineering, pharmaceutical chemistry, and toxicology, both in academia and fundamental research as well as in pharmaceutical companies. VOLUME 5 - Nanostructured Thin Films and Surfaces
Design and Development of Nanostructured Thin Films
Author: Antonella Macagnano
Publisher:
ISBN: 9783039287390
Category : Technology (General)
Languages : en
Pages : 386
Book Description
Due to their unique size-dependent physicochemical properties, nanostructured thin films are used in a wide range of applications from smart coating and drug delivery to electrocatalysis and highly-sensitive sensors. Depending on the targeted application and the deposition technique, these materials have been designed and developed by tuning their atomic-molecular 2D- and/or 3D-aggregation, thickness, crystallinity, and porosity, having effects on their optical, mechanical, catalytic, and conductive properties. Several open questions remain about the impact of nanomaterial production and use on environment and health. Many efforts are currently being made not only to prevent nanotechnologies and nanomaterials from contributing to environmental pollution but also to design nanomaterials to support, control, and protect the environment. This Special Issue aims to cover the recent advances in designing nanostructured films focusing on environmental issues related to their fabrication processes (e.g., low power and low cost technologies, the use of environmentally friendly solvents), their precursors (e.g., waste-recycled, bio-based, biodegradable, and natural materials), their applications (e.g., controlled release of chemicals, mimicking of natural processes, and clean energy conversion and storage), and their use in monitoring environment pollution (e.g., sensors optically- or electrically-sensitive to pollutants).
Publisher:
ISBN: 9783039287390
Category : Technology (General)
Languages : en
Pages : 386
Book Description
Due to their unique size-dependent physicochemical properties, nanostructured thin films are used in a wide range of applications from smart coating and drug delivery to electrocatalysis and highly-sensitive sensors. Depending on the targeted application and the deposition technique, these materials have been designed and developed by tuning their atomic-molecular 2D- and/or 3D-aggregation, thickness, crystallinity, and porosity, having effects on their optical, mechanical, catalytic, and conductive properties. Several open questions remain about the impact of nanomaterial production and use on environment and health. Many efforts are currently being made not only to prevent nanotechnologies and nanomaterials from contributing to environmental pollution but also to design nanomaterials to support, control, and protect the environment. This Special Issue aims to cover the recent advances in designing nanostructured films focusing on environmental issues related to their fabrication processes (e.g., low power and low cost technologies, the use of environmentally friendly solvents), their precursors (e.g., waste-recycled, bio-based, biodegradable, and natural materials), their applications (e.g., controlled release of chemicals, mimicking of natural processes, and clean energy conversion and storage), and their use in monitoring environment pollution (e.g., sensors optically- or electrically-sensitive to pollutants).